000838466 001__ 838466
000838466 005__ 20240625095123.0
000838466 0247_ $$2doi$$a10.1021/acs.jctc.7b00508
000838466 0247_ $$2ISSN$$a1549-9618
000838466 0247_ $$2ISSN$$a1549-9626
000838466 0247_ $$2Handle$$a2128/16225
000838466 0247_ $$2pmid$$apmid:28992702
000838466 0247_ $$2WOS$$aWOS:000415911800041
000838466 0247_ $$2altmetric$$aaltmetric:27538530
000838466 037__ $$aFZJ-2017-07069
000838466 041__ $$aEnglish
000838466 082__ $$a540
000838466 1001_ $$0P:(DE-HGF)0$$aTarenzi, Thomas$$b0
000838466 245__ $$aOpen Boundary Simulations of Proteins and Their Hydration Shells by Hamiltonian Adaptive Resolution Scheme
000838466 260__ $$aWashington, DC$$c2017
000838466 3367_ $$2DRIVER$$aarticle
000838466 3367_ $$2DataCite$$aOutput Types/Journal article
000838466 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513231918_28646
000838466 3367_ $$2BibTeX$$aARTICLE
000838466 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838466 3367_ $$00$$2EndNote$$aJournal Article
000838466 520__ $$aThe recently proposed Hamiltonian Adaptive Resolution Scheme (H-AdResS) allows to perform molecular simulations in an open boundary framework. It allows to change on the fly the resolution of specific subset of molecules (usually the solvent), which are free to diffuse between the atomistic region and the coarse-grained reservoir. So far, the method has been successfully applied to pure liquids. Coupling the H-AdResS methodology to hybrid models of proteins, such as the Molecular Mechanics/Coarse-Grained (MM/CG) scheme, is a promising approach for rigorous calculations of ligand binding free energies in low-resolution protein models. Towards this goal, here we apply for the first time H-AdResS to two atomistic proteins in dual-resolution solvent, proving its ability to reproduce structural and dynamic properties of both the proteins and the solvent, as obtained from atomistic simulations.
000838466 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000838466 588__ $$aDataset connected to CrossRef
000838466 7001_ $$0P:(DE-Juel1)166168$$aCalandrini, Vania$$b1$$eCorresponding author$$ufzj
000838466 7001_ $$0P:(DE-HGF)0$$aPotestio, Raffaello$$b2
000838466 7001_ $$0P:(DE-Juel1)165199$$aGiorgetti, Alejandro$$b3$$ufzj
000838466 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$ufzj
000838466 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.7b00508$$gp. acs.jctc.7b00508$$n11$$p5647–5657$$tJournal of chemical theory and computation$$v13$$x1549-9626$$y2017
000838466 8564_ $$uhttps://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.pdf$$yOpenAccess
000838466 8564_ $$uhttps://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.gif?subformat=icon$$xicon$$yOpenAccess
000838466 8564_ $$uhttps://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838466 8564_ $$uhttps://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838466 8564_ $$uhttps://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838466 8564_ $$uhttps://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838466 8767_ $$84211930943668$$92017-10-18$$d2017-10-18$$eHybrid-OA$$jZahlung erfolgt$$lKK: Barbers$$zUSD 2000,-
000838466 909CO $$ooai:juser.fz-juelich.de:838466$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000838466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166168$$aForschungszentrum Jülich$$b1$$kFZJ
000838466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165199$$aForschungszentrum Jülich$$b3$$kFZJ
000838466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b4$$kFZJ
000838466 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000838466 9141_ $$y2017
000838466 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838466 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000838466 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2015
000838466 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2015
000838466 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838466 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838466 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838466 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838466 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838466 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838466 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838466 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000838466 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000838466 980__ $$ajournal
000838466 980__ $$aVDB
000838466 980__ $$aUNRESTRICTED
000838466 980__ $$aI:(DE-Juel1)IAS-5-20120330
000838466 980__ $$aI:(DE-Juel1)INM-9-20140121
000838466 980__ $$aAPC
000838466 9801_ $$aAPC
000838466 9801_ $$aFullTexts