Home > Publications database > Open Boundary Simulations of Proteins and Their Hydration Shells by Hamiltonian Adaptive Resolution Scheme > print |
001 | 838466 | ||
005 | 20240625095123.0 | ||
024 | 7 | _ | |a 10.1021/acs.jctc.7b00508 |2 doi |
024 | 7 | _ | |a 1549-9618 |2 ISSN |
024 | 7 | _ | |a 1549-9626 |2 ISSN |
024 | 7 | _ | |a 2128/16225 |2 Handle |
024 | 7 | _ | |a pmid:28992702 |2 pmid |
024 | 7 | _ | |a WOS:000415911800041 |2 WOS |
024 | 7 | _ | |a altmetric:27538530 |2 altmetric |
037 | _ | _ | |a FZJ-2017-07069 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Tarenzi, Thomas |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Open Boundary Simulations of Proteins and Their Hydration Shells by Hamiltonian Adaptive Resolution Scheme |
260 | _ | _ | |a Washington, DC |c 2017 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1513231918_28646 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The recently proposed Hamiltonian Adaptive Resolution Scheme (H-AdResS) allows to perform molecular simulations in an open boundary framework. It allows to change on the fly the resolution of specific subset of molecules (usually the solvent), which are free to diffuse between the atomistic region and the coarse-grained reservoir. So far, the method has been successfully applied to pure liquids. Coupling the H-AdResS methodology to hybrid models of proteins, such as the Molecular Mechanics/Coarse-Grained (MM/CG) scheme, is a promising approach for rigorous calculations of ligand binding free energies in low-resolution protein models. Towards this goal, here we apply for the first time H-AdResS to two atomistic proteins in dual-resolution solvent, proving its ability to reproduce structural and dynamic properties of both the proteins and the solvent, as obtained from atomistic simulations. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Calandrini, Vania |0 P:(DE-Juel1)166168 |b 1 |e Corresponding author |u fzj |
700 | 1 | _ | |a Potestio, Raffaello |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Giorgetti, Alejandro |0 P:(DE-Juel1)165199 |b 3 |u fzj |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 4 |u fzj |
773 | _ | _ | |a 10.1021/acs.jctc.7b00508 |g p. acs.jctc.7b00508 |0 PERI:(DE-600)2166976-4 |n 11 |p 5647–5657 |t Journal of chemical theory and computation |v 13 |y 2017 |x 1549-9626 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/838466/files/acs.jctc.7b00508.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:838466 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)166168 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165199 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145614 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Free to read |0 LIC:(DE-HGF)PublisherOA |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM THEORY COMPUT : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CHEM THEORY COMPUT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|