000838471 001__ 838471
000838471 005__ 20250129094246.0
000838471 0247_ $$2Handle$$a2128/15715
000838471 0247_ $$2ISSN$$a1866-1807
000838471 020__ $$a978-3-95806-250-4
000838471 037__ $$aFZJ-2017-07074
000838471 041__ $$aEnglish
000838471 1001_ $$0P:(DE-Juel1)171267$$aThakuria, Pankaj$$b0$$eCorresponding author$$gmale$$ufzj
000838471 245__ $$aMagnetic structure in relation to the magnetic field induced ferroelectricity in Y-type hexaferrite Ba$_{2−x}$Sr$_{x}$Zn$_{2}$Fe$_{12}$O$_{22}$
000838471 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000838471 300__ $$a180 S.
000838471 3367_ $$2BibTeX$$aBOOK
000838471 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$bbook$$mbook$$s1576659337_5426
000838471 3367_ $$2DataCite$$aOutput Types/Book
000838471 3367_ $$2ORCID$$aBOOK
000838471 3367_ $$01$$2EndNote$$aBook
000838471 3367_ $$2DRIVER$$abook
000838471 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v151
000838471 500__ $$aRWTH Aachen, Diss., 2017
000838471 520__ $$aThis thesis consists of in depth study of spin structure of magnetoelectric Y-type hexaferrite Ba$_{2−x}$Sr$_{x}$Zn$_{2}$Fe$_{12}$O$_{22}$ system. Magnetoelectric and multiferroic materials are of high interest from information technology point of view, but traditional mechanism of magnetism and ferroelectricity makes it rare to observe both in single phase materials. One of the most widely studied non conventional mechanism where cross coupling of magnetism and ferroelectricity takes place in non-collinear spin systems is spin driven ferroelectricity by inverse Dzyaloshinskii-Moriya (IDM) mechanism or spin currect mechanism (SC). The spin frustration leading to non-collinear spin arrangements also leads to low magnetic ordering temperature hinders room temperature realization of magnetoelectric coupling effect. Hexaferrite systems are an answer to high temperature magnetoelectric behavior in single phase materials. Y-type hexaferrite with composition Ba$_{2−x}$Sr$_{x}$Zn$_{2}$Fe$_{12}$O$_{22}$ was the first hexaferrite to show magnetoelectric behavior, where a 2-fan planar spin structure was proposed, not compatible with the magnetic field (H) induced ferroelectricity by IDM/SC mechanism. In depth investigation of the spin structure and its relationship with macroscopic field driven ferroelectricity was the central point of this thesis. The widely accepted spin structure of Y-type hexaferrite is a spin block model with large (L) and small (S) spin blocks, collinear in spin arrangements inside the blocks but between the blocks arrangements changes from collinear to spiral depending upon the chemical composition. With change in the Sr content in the composition Ba$_{2−x}$Sr$_{x}$Zn$_{2}$Fe$_{12}$O$_{22}$ spin structure was reported to change from collinear to in plane spiral in earlier studies. The change in spin structures were easily visible in magnetization curves, when magnetic field was applied perpendicular to c-axis. In three samples with x=1.4,1.18 and 0.72 grown by flux methods, our refinement of single crystal x-ray diffraction data shows that Sr substitution causes local distortion and change in occupancies of Zn in the tetrahedral site which happens to be in the spin block boundary, accompanying a change in the Zn/Fe-O bond length. We speculate that the cumulative effect of local distortion, change in occupations of Zn and bond length change changes the superexchange interaction near the block boundary changing the spinstructure. [...]
000838471 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000838471 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000838471 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000838471 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000838471 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000838471 693__ $$0EXP:(DE-MLZ)BIODIFF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)BIODIFF-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eBIODIFF: Diffractometer for large unit cells$$fNL1$$x0
000838471 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x1
000838471 8564_ $$uhttps://juser.fz-juelich.de/record/838471/files/Schluesseltech_151.pdf$$yOpenAccess
000838471 8564_ $$uhttps://juser.fz-juelich.de/record/838471/files/Schluesseltech_151.gif?subformat=icon$$xicon$$yOpenAccess
000838471 8564_ $$uhttps://juser.fz-juelich.de/record/838471/files/Schluesseltech_151.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838471 8564_ $$uhttps://juser.fz-juelich.de/record/838471/files/Schluesseltech_151.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838471 8564_ $$uhttps://juser.fz-juelich.de/record/838471/files/Schluesseltech_151.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838471 8564_ $$uhttps://juser.fz-juelich.de/record/838471/files/Schluesseltech_151.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838471 909CO $$ooai:juser.fz-juelich.de:838471$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000838471 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838471 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838471 9141_ $$y2017
000838471 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171267$$aForschungszentrum Jülich$$b0$$kFZJ
000838471 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000838471 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000838471 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000838471 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000838471 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000838471 920__ $$lyes
000838471 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000838471 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000838471 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000838471 9801_ $$aFullTexts
000838471 980__ $$abook
000838471 980__ $$aVDB
000838471 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000838471 980__ $$aI:(DE-Juel1)PGI-4-20110106
000838471 980__ $$aI:(DE-82)080009_20140620
000838471 980__ $$aUNRESTRICTED
000838471 981__ $$aI:(DE-Juel1)JCNS-2-20110106