001     838472
005     20240709081911.0
024 7 _ |a 10.1002/ente.201700068
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a WOS:000410137900022
|2 WOS
024 7 _ |a altmetric:18924050
|2 altmetric
037 _ _ |a FZJ-2017-07075
082 _ _ |a 620
100 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Learning from Electrochemical Data: Simple Evaluation and Classification of LiMO 2 -type-based Positive Electrodes for Li-Ion Batteries
260 _ _ |a Weinheim [u.a.]
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508390736_24793
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The required boost in the specific energy of lithium-ion battery (LIB) cells can only be achieved by increasing the cell voltage and/or the specific capacities of the electrodes. In the latter regard, the positive electrode constitutes the specific energy bottleneck. Lithium transition-metal oxides (LiMO2) such as LiNixMnzCo1−x−zO2 (NMC) are regarded as the most suitable positive electrode materials for next-generation high-specific-energy LIBs. In this work, the electrochemically induced structural stability limits as well as the associated reversible specific energies and specific energy efficiencies were assessed by means of constant current charge/discharge experiments for the most popular and promising LiMO2 compositions. The electrochemically induced structural stability of the positive host material was not determined by the applied charge cut-off potential, but rather by the amount of extracted Li+ ions. In this regard, the electrochemically induced structural stability order of selected LiMO2 compositions was modified by assessing the structural stability as a function of the Li+-ion extraction ratio. With respect to application, relevant requirements (e.g., specific energy, specific energy efficiency, temperature-dependent structural stability, kinetics) revealed that NMC532 and NMC622 showed the best compromise among the various LiMO2 compositions, revealing significant insight into the structure–property relationship.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Evertz, Marco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kloepsch, Richard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 5
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/ente.201700068
|g Vol. 5, no. 9, p. 1670 - 1679
|0 PERI:(DE-600)2700412-0
|n 9
|p 1670 - 1679
|t Energy technology
|v 5
|y 2017
|x 2194-4288
909 C O |o oai:juser.fz-juelich.de:838472
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21