000838481 001__ 838481
000838481 005__ 20240712113100.0
000838481 0247_ $$2doi$$a10.3934/matersci.2017.4.867
000838481 0247_ $$2ISSN$$a2372-0468
000838481 0247_ $$2ISSN$$a2372-0484
000838481 0247_ $$2Handle$$a2128/15641
000838481 0247_ $$2WOS$$aWOS:000416071000004
000838481 037__ $$aFZJ-2017-07078
000838481 041__ $$aEnglish
000838481 082__ $$a530
000838481 1001_ $$0P:(DE-Juel1)169125$$aHüter, Claas$$b0$$eCorresponding author$$ufzj
000838481 245__ $$aElectrode–Electrolyte Interface Stability in Solid State Electrolyte Systems: Influence of Coating Thickness Under Varying Residual Stresses
000838481 260__ $$aSpringfield, Mo.$$bAIMS Press$$c2017
000838481 3367_ $$2DRIVER$$aarticle
000838481 3367_ $$2DataCite$$aOutput Types/Journal article
000838481 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552643062_21952
000838481 3367_ $$2BibTeX$$aARTICLE
000838481 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838481 3367_ $$00$$2EndNote$$aJournal Article
000838481 520__ $$aWe introduce a model of electrode–electrolyte interfacial growth which focuses on theeffect of thin coating layers on the interfacial stability in prestressed systems. We take into accounttransport resulting from deposition from the electrolyte, from capillarity driven surface diffusion, andfrom changes of the chemical potential due to the elastic energy associated with the interface profile.As model system, we use metallic lithium as electrode, LLZO as electrolyte and Al2O3 as a thin filminterlayer, which is a highly relevant interfacial system in state of the art all-solid-electrolyte batteries.We consider the stability of the electrode-coating-electrolyte interface depending on the thickness ofthe thin film interlayer and the magnitude of the elastic prestresses. Our central approach is a linearstability analysis based on the mass conservation at the planar interface, employing approximationswhich are appropriate for solid state electrolytes (SSEs) like LLZ, a thin Li metal electrode and a thincoating layer with a thickness in the range of nanometres.
000838481 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000838481 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000838481 536__ $$0G:(DE-Juel1)jiek2c_20171101$$aBattery Failure - Interfacial Stability and non-diagonal phase field models (jiek2c_20171101)$$cjiek2c_20171101$$fBattery Failure - Interfacial Stability and non-diagonal phase field models$$x2
000838481 588__ $$aDataset connected to CrossRef
000838481 7001_ $$0P:(DE-Juel1)172732$$aFu, Shuo$$b1$$ufzj
000838481 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b2$$ufzj
000838481 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b3$$ufzj
000838481 7001_ $$0P:(DE-HGF)0$$aWells, Luke$$b4
000838481 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b5$$ufzj
000838481 773__ $$0PERI:(DE-600)2777112-X$$a10.3934/matersci.2017.4.867$$gVol. 4, no. 4, p. 867 - 877$$n4$$p867 - 877$$tAIMS Materials Science$$v4$$x2372-0484$$y2017
000838481 8564_ $$uhttps://juser.fz-juelich.de/record/838481/files/matersci-04-00867.pdf$$yOpenAccess
000838481 8564_ $$uhttps://juser.fz-juelich.de/record/838481/files/matersci-04-00867.gif?subformat=icon$$xicon$$yOpenAccess
000838481 8564_ $$uhttps://juser.fz-juelich.de/record/838481/files/matersci-04-00867.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838481 8564_ $$uhttps://juser.fz-juelich.de/record/838481/files/matersci-04-00867.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838481 8564_ $$uhttps://juser.fz-juelich.de/record/838481/files/matersci-04-00867.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838481 8564_ $$uhttps://juser.fz-juelich.de/record/838481/files/matersci-04-00867.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838481 909CO $$ooai:juser.fz-juelich.de:838481$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000838481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169125$$aForschungszentrum Jülich$$b0$$kFZJ
000838481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172732$$aForschungszentrum Jülich$$b1$$kFZJ
000838481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b2$$kFZJ
000838481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b3$$kFZJ
000838481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b5$$kFZJ
000838481 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000838481 9141_ $$y2017
000838481 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838481 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838481 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838481 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000838481 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838481 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838481 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838481 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000838481 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000838481 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x2
000838481 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000838481 9801_ $$aFullTexts
000838481 980__ $$ajournal
000838481 980__ $$aVDB
000838481 980__ $$aI:(DE-Juel1)IEK-1-20101013
000838481 980__ $$aI:(DE-Juel1)IEK-2-20101013
000838481 980__ $$aI:(DE-Juel1)IEK-12-20141217
000838481 980__ $$aI:(DE-82)080012_20140620
000838481 980__ $$aUNRESTRICTED
000838481 981__ $$aI:(DE-Juel1)IMD-1-20101013
000838481 981__ $$aI:(DE-Juel1)IMD-4-20141217
000838481 981__ $$aI:(DE-Juel1)IMD-2-20101013