001     838481
005     20240712113100.0
024 7 _ |a 10.3934/matersci.2017.4.867
|2 doi
024 7 _ |a 2372-0468
|2 ISSN
024 7 _ |a 2372-0484
|2 ISSN
024 7 _ |a 2128/15641
|2 Handle
024 7 _ |a WOS:000416071000004
|2 WOS
037 _ _ |a FZJ-2017-07078
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Hüter, Claas
|0 P:(DE-Juel1)169125
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Electrode–Electrolyte Interface Stability in Solid State Electrolyte Systems: Influence of Coating Thickness Under Varying Residual Stresses
260 _ _ |a Springfield, Mo.
|c 2017
|b AIMS Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552643062_21952
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We introduce a model of electrode–electrolyte interfacial growth which focuses on theeffect of thin coating layers on the interfacial stability in prestressed systems. We take into accounttransport resulting from deposition from the electrolyte, from capillarity driven surface diffusion, andfrom changes of the chemical potential due to the elastic energy associated with the interface profile.As model system, we use metallic lithium as electrode, LLZO as electrolyte and Al2O3 as a thin filminterlayer, which is a highly relevant interfacial system in state of the art all-solid-electrolyte batteries.We consider the stability of the electrode-coating-electrolyte interface depending on the thickness ofthe thin film interlayer and the magnitude of the elastic prestresses. Our central approach is a linearstability analysis based on the mass conservation at the planar interface, employing approximationswhich are appropriate for solid state electrolytes (SSEs) like LLZ, a thin Li metal electrode and a thincoating layer with a thickness in the range of nanometres.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
536 _ _ |a Battery Failure - Interfacial Stability and non-diagonal phase field models (jiek2c_20171101)
|0 G:(DE-Juel1)jiek2c_20171101
|c jiek2c_20171101
|f Battery Failure - Interfacial Stability and non-diagonal phase field models
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fu, Shuo
|0 P:(DE-Juel1)172732
|b 1
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 2
|u fzj
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 3
|u fzj
700 1 _ |a Wells, Luke
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Spatschek, Robert
|0 P:(DE-Juel1)130979
|b 5
|u fzj
773 _ _ |a 10.3934/matersci.2017.4.867
|g Vol. 4, no. 4, p. 867 - 877
|0 PERI:(DE-600)2777112-X
|n 4
|p 867 - 877
|t AIMS Materials Science
|v 4
|y 2017
|x 2372-0484
856 4 _ |u https://juser.fz-juelich.de/record/838481/files/matersci-04-00867.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838481/files/matersci-04-00867.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838481/files/matersci-04-00867.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838481/files/matersci-04-00867.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838481/files/matersci-04-00867.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838481/files/matersci-04-00867.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:838481
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172732
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130979
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21