000838482 001__ 838482 000838482 005__ 20240709094343.0 000838482 0247_ $$2doi$$a10.1007/s00161-015-0424-7 000838482 0247_ $$2WOS$$aWOS:000403509700001 000838482 0247_ $$2altmetric$$aaltmetric:2515759 000838482 037__ $$aFZJ-2017-07079 000838482 082__ $$a530 000838482 1001_ $$0P:(DE-HGF)0$$aNeugebauer, J.$$b0 000838482 245__ $$aModelling of Grain Bondary Dynamics Using Amplitude Equations 000838482 260__ $$aBerlin$$bSpringer$$c2017 000838482 3367_ $$2DRIVER$$aarticle 000838482 3367_ $$2DataCite$$aOutput Types/Journal article 000838482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508417384_24784 000838482 3367_ $$2BibTeX$$aARTICLE 000838482 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000838482 3367_ $$00$$2EndNote$$aJournal Article 000838482 520__ $$aWe discuss the modelling of grain boundary dynamics within an amplitude equations description, which is derived from classical density functional theory or the phase field crystal model. The relation between the conditions for periodicity of the system and coincidence site lattices at grain boundaries is investigated. Within the amplitude equations framework, we recover predictions of the geometrical model by Cahn and Taylor for coupled grain boundary motion, and find both ⟨100⟩ and ⟨110⟩ coupling. No spontaneous transition between these modes occurs due to restrictions related to the rotational invariance of the amplitude equations. Grain rotation due to coupled motion is also in agreement with theoretical predictions. Whereas linear elasticity is correctly captured by the amplitude equations model, open questions remain for the case of nonlinear deformations. 000838482 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0 000838482 7001_ $$0P:(DE-Juel1)169125$$aHüter, Claas$$b1$$eCorresponding author$$ufzj 000838482 7001_ $$0P:(DE-HGF)0$$aBoussinot, G.$$b2 000838482 7001_ $$0P:(DE-HGF)0$$aSvendsen, B.$$b3 000838482 7001_ $$0P:(DE-HGF)0$$aPrahl, U.$$b4 000838482 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b5$$ufzj 000838482 773__ $$0PERI:(DE-600)1478722-2$$a10.1007/s00161-015-0424-7$$n4$$p895-911$$tContinuum mechanics and thermodynamics$$v29$$x0935-1175$$y2017 000838482 909CO $$ooai:juser.fz-juelich.de:838482$$pVDB 000838482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169125$$aForschungszentrum Jülich$$b1$$kFZJ 000838482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b5$$kFZJ 000838482 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0 000838482 9141_ $$y2017 000838482 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000838482 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCONTINUUM MECH THERM : 2015 000838482 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000838482 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000838482 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000838482 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000838482 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000838482 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000838482 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000838482 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000838482 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000838482 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 000838482 980__ $$ajournal 000838482 980__ $$aVDB 000838482 980__ $$aI:(DE-Juel1)IEK-2-20101013 000838482 980__ $$aUNRESTRICTED 000838482 981__ $$aI:(DE-Juel1)IMD-1-20101013