000838483 001__ 838483
000838483 005__ 20240711092243.0
000838483 0247_ $$2doi$$a10.1111/ijac.12809
000838483 0247_ $$2ISSN$$a1546-542X
000838483 0247_ $$2ISSN$$a1744-7402
000838483 0247_ $$2WOS$$aWOS:000424816400013
000838483 037__ $$aFZJ-2017-07080
000838483 082__ $$a620
000838483 1001_ $$0P:(DE-Juel1)166023$$aYin, Xiaoyan$$b0$$eCorresponding author
000838483 245__ $$aThermodynamic Perspective of Sr-Related Degradation Issues in SOFCs
000838483 260__ $$aWesterville, Ohio$$bWiley-Blackwell$$c2018
000838483 3367_ $$2DRIVER$$aarticle
000838483 3367_ $$2DataCite$$aOutput Types/Journal article
000838483 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518613818_19766
000838483 3367_ $$2BibTeX$$aARTICLE
000838483 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838483 3367_ $$00$$2EndNote$$aJournal Article
000838483 520__ $$a(La,Sr)(Co,Fe)O3-δ is very common as cathode material in SOFC applications. Sr in this type of cathode material is very reactive to form secondary phases with other oxides, which affect micro-structures and properties of the cathode materials, GDC layers and ZrO2-based electrolytes. The Sr-related degradation issues, Cr poisoning and volatile Sr species formation, are studied. As supplement to existing experimental knowledge on Cr poisoning, specific thermodynamic aspects for Cr poisoning are discussed. The thermodynamic calculations show that the partial pressure pCrO3 has a stronger temperature dependence than pCrO2(OH)2, and when considering the reaction between SrO and CrO3(g), dependent on different pCrO3 and pO2, different Sr–Cr–O compounds SrCrO4, SrCrO3, Sr3Cr2O8 or Sr2CrO4 could be formed. In addition, thermodynamic calculations show that in the presence of water vapor, formation of volatile Sr(OH)2 is possible as well. pSr(OH)2 depends on temperature, pH2O and SrO activity and can be of the same order of magnitude as pCrO2(OH)2. Volatile Sr(OH)2 can diffuse through the porous GDC layer and react with ZrO2-based electrolytes to form SrZrO3 precipitates. The reaction between gaseous Sr species and 8YSZ sheet is studied experimentally. The surface of the 8YSZ sheet is investigated by SEM coupled with EDS, confirming the deposition of Sr.
000838483 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000838483 588__ $$aDataset connected to CrossRef
000838483 7001_ $$0P:(DE-Juel1)159248$$aBencze, Laszlo$$b1
000838483 7001_ $$0P:(DE-Juel1)129761$$aMotalov, Vladimir$$b2
000838483 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b3$$eCorresponding author
000838483 7001_ $$0P:(DE-Juel1)129795$$aSingheiser, Lorenz$$b4
000838483 773__ $$0PERI:(DE-600)2167226-X$$a10.1111/ijac.12809$$p380–390$$tInternational journal of applied ceramic technology$$v15$$x1546-542X$$y2018
000838483 8564_ $$uhttps://juser.fz-juelich.de/record/838483/files/Yin_et_al-2018-International_Journal_of_Applied_Ceramic_Technology.pdf$$yRestricted
000838483 8564_ $$uhttps://juser.fz-juelich.de/record/838483/files/Yin_et_al-2018-International_Journal_of_Applied_Ceramic_Technology.gif?subformat=icon$$xicon$$yRestricted
000838483 8564_ $$uhttps://juser.fz-juelich.de/record/838483/files/Yin_et_al-2018-International_Journal_of_Applied_Ceramic_Technology.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838483 8564_ $$uhttps://juser.fz-juelich.de/record/838483/files/Yin_et_al-2018-International_Journal_of_Applied_Ceramic_Technology.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838483 8564_ $$uhttps://juser.fz-juelich.de/record/838483/files/Yin_et_al-2018-International_Journal_of_Applied_Ceramic_Technology.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838483 8564_ $$uhttps://juser.fz-juelich.de/record/838483/files/Yin_et_al-2018-International_Journal_of_Applied_Ceramic_Technology.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838483 909CO $$ooai:juser.fz-juelich.de:838483$$pVDB
000838483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166023$$aForschungszentrum Jülich$$b0$$kFZJ
000838483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b3$$kFZJ
000838483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129795$$aForschungszentrum Jülich$$b4$$kFZJ
000838483 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000838483 9141_ $$y2018
000838483 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J APPL CERAM TEC : 2015
000838483 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838483 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838483 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838483 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838483 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838483 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838483 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838483 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838483 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000838483 980__ $$ajournal
000838483 980__ $$aVDB
000838483 980__ $$aI:(DE-Juel1)IEK-2-20101013
000838483 980__ $$aUNRESTRICTED
000838483 981__ $$aI:(DE-Juel1)IMD-1-20101013