000838491 001__ 838491 000838491 005__ 20210129231550.0 000838491 037__ $$aFZJ-2017-07088 000838491 041__ $$aEnglish 000838491 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj 000838491 1112_ $$aGAMM CSE Workshop 2017$$cJülich$$d2017-10-19 - 2017-10-20$$wGermany 000838491 245__ $$aMedian filtering and its extensions for color images 000838491 260__ $$c2017 000838491 3367_ $$033$$2EndNote$$aConference Paper 000838491 3367_ $$2DataCite$$aOther 000838491 3367_ $$2BibTeX$$aINPROCEEDINGS 000838491 3367_ $$2DRIVER$$aconferenceObject 000838491 3367_ $$2ORCID$$aLECTURE_SPEECH 000838491 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1508476104_23797$$xAfter Call 000838491 520__ $$aThe construction of structure-preserving denoising filters for color images is a challenging task. A new approach is presented that is based on a recently proposed transformation from the RGB color space to the space of symmetric 2x2 matrices (Burgeth, B., Kleefeld A. (2014) An approach to color-morphology based on Einstein addition and Loewner order, Pattern Recognition Letters, 47, 29-39.). This new framework coupled with spatial adaptivity via morphological amoebas offers excellent capabilities for structure-preserving filtering of color images. Additionally, a generalization of the median-based concept is proposed leading to color-valued amoeba M-smoothers. Numerical experiments confirm the applicability and the potential of this novel approach (Kleefeld, A. et al. (2015) Adaptive Filters for Color Images: Median Filtering and its Extensions, Lecture Notes in Computer Science, Springer, Berlin, 9016, 149-158.). 000838491 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000838491 909CO $$ooai:juser.fz-juelich.de:838491$$pVDB 000838491 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ 000838491 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000838491 9141_ $$y2017 000838491 920__ $$lyes 000838491 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000838491 980__ $$aconf 000838491 980__ $$aVDB 000838491 980__ $$aI:(DE-Juel1)JSC-20090406 000838491 980__ $$aUNRESTRICTED