000838494 001__ 838494
000838494 005__ 20210129231551.0
000838494 0247_ $$2doi$$a10.1021/acs.jcim.7b00567
000838494 0247_ $$2ISSN$$a0095-2338
000838494 0247_ $$2ISSN$$a1520-5142
000838494 0247_ $$2ISSN$$a1549-9596
000838494 0247_ $$2ISSN$$a1549-960X
000838494 0247_ $$2altmetric$$aaltmetric:27347976
000838494 0247_ $$2pmid$$apmid:29019403
000838494 0247_ $$2WOS$$aWOS:000416614900019
000838494 037__ $$aFZJ-2017-07091
000838494 041__ $$aEnglish
000838494 082__ $$a540
000838494 1001_ $$0P:(DE-HGF)0$$aHanke, Christian$$b0
000838494 245__ $$aTertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site
000838494 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017
000838494 3367_ $$2DRIVER$$aarticle
000838494 3367_ $$2DataCite$$aOutput Types/Journal article
000838494 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511855197_21600
000838494 3367_ $$2BibTeX$$aARTICLE
000838494 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838494 3367_ $$00$$2EndNote$$aJournal Article
000838494 520__ $$aRiboswitches are genetic regulatory elements mainly found in bacteria, which regulate gene expression based on the availability of a ligand. Purine-sensing riboswitches, including the guanine-sensing riboswitch (Gsw), possess tertiary interactions connecting the L2 and L3 loops. These interactions are important for ligand binding to the aptamer. However, atomic-level structural knowledge about the unbound state and how the tertiary interactions influence the conformational heterogeneity of the aptamer is still scarce. We performed replica exchange molecular dynamics simulations of the aptamer domain of wild type Gsw and a G37A/C61U mutant, which exhibits destabilized tertiary interactions, at different Mg2+ concentrations with an aggregate simulation time of ~16 µs, and subsequently obtained free energy landscapes. Our data provide evidence that suggests that the unbound state of wild type Gsw is conformationally rather homogeneous from a global view point, yet the ligand binding site shows functionally necessary mobility required for ligand binding. For the mutant, the data suggest a heterogeneous ensemble, in particular without Mg2+. Hence, the tertiary interactions focus functional conformational variability on the binding site region of wild type Gsw. Our data allows speculating that already the weakening of the tertiary interactions by two hydrogen bonds shifts the kinetics of folding from downhill folding without traps or intermediate states for wild type Gsw to a folding including intermediates and misfolded structures for the mutant. A slowed-down folding of the aptamer might favor a decision during transcriptional regulation for the off-path, even if the ligand binds.
000838494 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000838494 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000838494 536__ $$0G:(DE-Juel1)hdd08_20111101$$aImpact of conformational heterogeneity of riboswitches on gene regulation (hdd08_20111101)$$chdd08_20111101$$fImpact of conformational heterogeneity of riboswitches on gene regulation$$x2
000838494 588__ $$aDataset connected to CrossRef
000838494 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b1$$eCorresponding author$$ufzj
000838494 773__ $$0PERI:(DE-600)1491237-5$$a10.1021/acs.jcim.7b00567$$gp. acs.jcim.7b00567$$n11$$p2822–2832$$tJournal of chemical information and modeling$$v57$$x0095-2338$$y2017
000838494 8564_ $$uhttps://juser.fz-juelich.de/record/838494/files/acs.jcim.7b00567.pdf$$yRestricted
000838494 8564_ $$uhttps://juser.fz-juelich.de/record/838494/files/acs.jcim.7b00567.gif?subformat=icon$$xicon$$yRestricted
000838494 8564_ $$uhttps://juser.fz-juelich.de/record/838494/files/acs.jcim.7b00567.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838494 8564_ $$uhttps://juser.fz-juelich.de/record/838494/files/acs.jcim.7b00567.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838494 8564_ $$uhttps://juser.fz-juelich.de/record/838494/files/acs.jcim.7b00567.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838494 8564_ $$uhttps://juser.fz-juelich.de/record/838494/files/acs.jcim.7b00567.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838494 909CO $$ooai:juser.fz-juelich.de:838494$$pVDB
000838494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b1$$kFZJ
000838494 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000838494 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000838494 9141_ $$y2017
000838494 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838494 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838494 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838494 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM INF MODEL : 2015
000838494 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838494 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838494 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838494 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838494 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838494 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838494 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838494 920__ $$lyes
000838494 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000838494 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x1
000838494 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000838494 980__ $$ajournal
000838494 980__ $$aVDB
000838494 980__ $$aI:(DE-Juel1)JSC-20090406
000838494 980__ $$aI:(DE-Juel1)ICS-6-20110106
000838494 980__ $$aI:(DE-Juel1)NIC-20090406
000838494 980__ $$aUNRESTRICTED
000838494 981__ $$aI:(DE-Juel1)IBI-7-20200312