000838516 001__ 838516
000838516 005__ 20210129231553.0
000838516 0247_ $$2doi$$a10.1007/s00259-017-3846-6
000838516 0247_ $$2ISSN$$a0340-6997
000838516 0247_ $$2ISSN$$a1432-105X
000838516 0247_ $$2ISSN$$a1619-7070
000838516 0247_ $$2ISSN$$a1619-7089
000838516 0247_ $$2pmid$$apmid:29043400
000838516 0247_ $$2WOS$$aWOS:000423396800014
000838516 037__ $$aFZJ-2017-07108
000838516 082__ $$a610
000838516 1001_ $$0P:(DE-Juel1)171957$$aVerger, Antoine$$b0$$eCorresponding author
000838516 245__ $$aStatic and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status
000838516 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2018
000838516 3367_ $$2DRIVER$$aarticle
000838516 3367_ $$2DataCite$$aOutput Types/Journal article
000838516 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517576034_13750
000838516 3367_ $$2BibTeX$$aARTICLE
000838516 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838516 3367_ $$00$$2EndNote$$aJournal Article
000838516 520__ $$aPurposeThe molecular features isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion have gained major importance for both glioma typing and prognosis and have, therefore, been integrated in the World Health Organization (WHO) classification in 2016. The aim of this study was to characterize static and dynamic O-(2-18F-fluoroethyl)-L-tyrosine (18F–FET) PET parameters in gliomas with or without IDH mutation or 1p/19q co-deletion.MethodsNinety patients with newly diagnosed and untreated gliomas with a static and dynamic 18F–FET PET scan prior to evaluation of tumor tissue according to the 2016 WHO classification were identified retrospectively. Mean and maximum tumor-to-brain ratios (TBRmean/max), as well as dynamic parameters (time-to-peak and slope) of 18F–FET uptake were calculated.ResultsSixteen (18%) oligodendrogliomas (IDH mutated, 1p/19q co-deleted), 27 (30%) astrocytomas (IDH mutated only), and 47 (52%) glioblastomas (IDH wild type only) were identified. TBRmean, TBRmax, TTP and slope discriminated between IDH mutated astrocytomas and IDH wild type glioblastomas (P < 0.01). TBRmean showed the best diagnostic performance (cut-off 1.95; sensitivity, 89%; specificity, 67%; accuracy, 81%). None of the parameters discriminated between oligodendrogliomas (IDH mutated, 1p/19q co-deleted) and glioblastomas or astrocytomas. Furthermore, TBRmean, TBRmax, TTP, and slope discriminated between gliomas with and without IDH mutation (p < 0.01). The best diagnostic performance was obtained for the combination of TTP with TBRmax or slope (accuracy, 73%).ConclusionData suggest that static and dynamic 18F–FET PET parameters may allow determining non-invasively the IDH mutation status. However, IDH mutated and 1p/19q co-deleted oligodendrogliomas cannot be differentiated from glioblastomas and astrocytomas by 18F–FET PET.
000838516 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000838516 588__ $$aDataset connected to CrossRef
000838516 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b1
000838516 7001_ $$0P:(DE-HGF)0$$aBauer, Elena K.$$b2
000838516 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b3
000838516 7001_ $$0P:(DE-HGF)0$$aBlau, Tobias$$b4
000838516 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b5
000838516 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b6
000838516 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b7
000838516 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b8
000838516 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b9
000838516 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-017-3846-6$$n3$$p443–451$$tEuropean journal of nuclear medicine and molecular imaging$$v45$$x1619-7089$$y2018
000838516 8564_ $$uhttps://juser.fz-juelich.de/record/838516/files/10.1007_s00259-017-3846-6.pdf$$yRestricted
000838516 8564_ $$uhttps://juser.fz-juelich.de/record/838516/files/10.1007_s00259-017-3846-6.gif?subformat=icon$$xicon$$yRestricted
000838516 8564_ $$uhttps://juser.fz-juelich.de/record/838516/files/10.1007_s00259-017-3846-6.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838516 8564_ $$uhttps://juser.fz-juelich.de/record/838516/files/10.1007_s00259-017-3846-6.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838516 8564_ $$uhttps://juser.fz-juelich.de/record/838516/files/10.1007_s00259-017-3846-6.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838516 8564_ $$uhttps://juser.fz-juelich.de/record/838516/files/10.1007_s00259-017-3846-6.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838516 909CO $$ooai:juser.fz-juelich.de:838516$$pVDB
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171957$$aForschungszentrum Jülich$$b0$$kFZJ
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b1$$kFZJ
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b3$$kFZJ
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b6$$kFZJ
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b8$$kFZJ
000838516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b9$$kFZJ
000838516 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000838516 9141_ $$y2018
000838516 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838516 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838516 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838516 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838516 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838516 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2015
000838516 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838516 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838516 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838516 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838516 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000838516 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000838516 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J NUCL MED MOL I : 2015
000838516 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000838516 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000838516 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000838516 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x3
000838516 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x4
000838516 980__ $$ajournal
000838516 980__ $$aVDB
000838516 980__ $$aI:(DE-Juel1)INM-3-20090406
000838516 980__ $$aI:(DE-Juel1)INM-4-20090406
000838516 980__ $$aI:(DE-Juel1)INM-5-20090406
000838516 980__ $$aI:(DE-Juel1)INM-11-20170113
000838516 980__ $$aI:(DE-82)080010_20140620
000838516 980__ $$aUNRESTRICTED