000838536 001__ 838536
000838536 005__ 20240711092244.0
000838536 0247_ $$2doi$$a10.1016/j.micron.2017.07.010
000838536 0247_ $$2ISSN$$a0047-7206
000838536 0247_ $$2ISSN$$a0968-4328
000838536 0247_ $$2ISSN$$a1878-1152
000838536 0247_ $$2ISSN$$a1878-4291
000838536 0247_ $$2pmid$$apmid:28825996
000838536 0247_ $$2WOS$$aWOS:000413283300029
000838536 037__ $$aFZJ-2017-07118
000838536 082__ $$a570
000838536 1001_ $$0P:(DE-Juel1)159139$$aLopez Barrilao, Jennifer$$b0$$ufzj
000838536 245__ $$aIdentification, Size Classification and Evolution of Laves Phase Precipitates in High Chromium, Fully Ferritic Steels
000838536 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000838536 3367_ $$2DRIVER$$aarticle
000838536 3367_ $$2DataCite$$aOutput Types/Journal article
000838536 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508741236_30569
000838536 3367_ $$2BibTeX$$aARTICLE
000838536 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838536 3367_ $$00$$2EndNote$$aJournal Article
000838536 520__ $$aTo fulfil the new challenges of the German “Energiewende” more efficient, sustainable, flexible and cost-effective energy technologies are strongly needed. For a reduction of consumed primary resources higher efficiency steam cycles with increased operating parameters, pressure and temperature, are mandatory. Therefore advanced materials are needed. The present study focuses on a new concept of high chromium, fully ferritic steels. These steels, originally designed for solid oxide fuel cell applications, provide favourable steam oxidation resistance, creep and thermomechanical fatigue behaviour in comparison to conventional ferritic-martensitic steels. The strength of this type of steel is achieved by a combination of solid-solution hardening and precipitation strengthening by intermetallic Laves phase particles. The effect of alloy composition on particle composition was measured by energy dispersive X-ray spectroscopy and partly verified by thermodynamic modelling results. Generally the Laves phase particles demonstrated high thermodynamic stability during long-term annealing up to 40,000 h at 600 °C. Variations in chemical alloy composition influence Laves phase particle formation and consequently lead to significant changes in creep behaviour. For this reason particle size distribution evolution was analysed in detail and associated with the creep performance of several trial alloys.
000838536 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000838536 588__ $$aDataset connected to CrossRef
000838536 7001_ $$0P:(DE-Juel1)129742$$aKuhn, Bernd$$b1$$eCorresponding author$$ufzj
000838536 7001_ $$0P:(DE-Juel1)129810$$aWessel, Egbert$$b2$$ufzj
000838536 773__ $$0PERI:(DE-600)1492133-9$$a10.1016/j.micron.2017.07.010$$gVol. 101, p. 221 - 231$$p221 - 231$$tMicron$$v101$$x0968-4328$$y2017
000838536 8564_ $$uhttps://juser.fz-juelich.de/record/838536/files/1-s2.0-S0968432817301440-main.pdf$$yRestricted
000838536 8564_ $$uhttps://juser.fz-juelich.de/record/838536/files/1-s2.0-S0968432817301440-main.gif?subformat=icon$$xicon$$yRestricted
000838536 8564_ $$uhttps://juser.fz-juelich.de/record/838536/files/1-s2.0-S0968432817301440-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838536 8564_ $$uhttps://juser.fz-juelich.de/record/838536/files/1-s2.0-S0968432817301440-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838536 8564_ $$uhttps://juser.fz-juelich.de/record/838536/files/1-s2.0-S0968432817301440-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838536 8564_ $$uhttps://juser.fz-juelich.de/record/838536/files/1-s2.0-S0968432817301440-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838536 909CO $$ooai:juser.fz-juelich.de:838536$$pVDB
000838536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159139$$aForschungszentrum Jülich$$b0$$kFZJ
000838536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b1$$kFZJ
000838536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129810$$aForschungszentrum Jülich$$b2$$kFZJ
000838536 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000838536 9141_ $$y2017
000838536 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838536 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838536 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838536 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838536 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICRON : 2015
000838536 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838536 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838536 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838536 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838536 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838536 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838536 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000838536 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000838536 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000838536 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838536 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000838536 980__ $$ajournal
000838536 980__ $$aVDB
000838536 980__ $$aI:(DE-Juel1)IEK-2-20101013
000838536 980__ $$aUNRESTRICTED
000838536 981__ $$aI:(DE-Juel1)IMD-1-20101013