001     838594
005     20240711113826.0
024 7 _ |a 10.1016/j.nme.2016.11.032
|2 doi
024 7 _ |a 2128/15683
|2 Handle
024 7 _ |a WOS:000417293300195
|2 WOS
037 _ _ |a FZJ-2017-07171
082 _ _ |a 333.7
100 1 _ |a Spilker, B.
|0 P:(DE-Juel1)159558
|b 0
|e Corresponding author
245 _ _ |a High Pulse Number transient heat loads on beryllium
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508831162_31135
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The experimental fusion reactor ITER will apply beryllium as first wall armor material. In present fusion experiments, e.g. ASDEX Upgrade, it has been detected that up to 25% of the plasma energy loss is deposited in non divertor regions during edge localized mode (ELM) events. Therefore, the impact of transient heating events on beryllium needs to be investigated to reliably predict the performance of the beryllium armor tiles under ITER operational conditions. In the present experiments, the electron beam facility JUDITH 2 was used to exert transient heat pulses with power densities of 0.14–1.0 GW m−2, as they can be expected for mitigated Type 1 ELMs in ITER, pulse durations in the range of 0.08–1.0 ms, and a number of pulses in the range of 103–107 on S-65 beryllium specimens that were brazed on an actively cooled copper structure. Thereby, a strong drop of the melting threshold was discovered from a heat flux factor FHF = 22–25 MW m−2s0.5 for 102 pulses to FHF < 12 MW m−2s0.5 for 103 pulses. However, a saturation of the thermally induced damage was observed for FHF ≤ 9 MW m−2s0.5 after 105 pulses. This result indicated a promising performance of beryllium under a high number of transient heat pulses in ITER. Nevertheless, the synergistic effects between thermal loads, particle loads, and neutron irradiation might affect the saturation threshold and need to be investigated in future studies.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Linke, J.
|0 P:(DE-Juel1)129747
|b 1
700 1 _ |a Loewenhoff, Th.
|0 P:(DE-Juel1)129751
|b 2
700 1 _ |a Pintsuk, G.
|0 P:(DE-Juel1)129778
|b 3
700 1 _ |a Wirtz, M.
|0 P:(DE-Juel1)129811
|b 4
773 _ _ |a 10.1016/j.nme.2016.11.032
|g Vol. 12, p. 1184 - 1188
|0 PERI:(DE-600)2808888-8
|p 1184 - 1188
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838594/files/1-s2.0-S2352179116300515-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838594/files/1-s2.0-S2352179116300515-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838594/files/1-s2.0-S2352179116300515-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838594/files/1-s2.0-S2352179116300515-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838594/files/1-s2.0-S2352179116300515-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838594/files/1-s2.0-S2352179116300515-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838594
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159558
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129747
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129751
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129811
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21