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Abstract

The optical excitation spectra and excitonic resonances are investigated in systematically functionalized

SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body

perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as

for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and

show the high stability of the predicted two-dimensional materials. Their realization in laboratory is thus

possible. Huge band-gaps of the order of 4 eV are found in the so-called GW approximation, with the

occurrence of bright excitons, optically active in the four investigated materials. Their binding energies

vary from 0.9 eV to 1.75 eV depending on the decoration choice and in one case, a dark exciton is foreseen

to exist in the fully chlorinated SiC. The wide variety of opto-electronic properties suggest halogenated

SiC as interesting materials with potential not only for solar cell applications, anti-reflection coatings or

high-reflective systems but also for a possible realization of excitonic Bose-Einstein condensation.
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I. INTRODUCTION

Graphene has been largely studied and developed as a promising candidate for both funda-

mental research and advances in nanotechnology. This carbon nanosheet carries many unique

properties over conventional materials such as high electrical conductivity, high electron mobility

at room temperature [1, 2], and excellent optical transmittance [3] in the visible light range, which

render this material highly promising for transparent conducting electrodes [4] and solar cells [5].

Moreover, transparent electrode based-graphene yields white organic light-emitting diodes with

brightness and efficiency sufficient for general lighting [6].

Functionalization of graphene in order to tune its properties by different combinations of several

types of materials is a large stream of activities in what we would name graphinology. For instance,

oxygenation[7] and hydrogenation [8] has inspired intense search for novel graphene-based ma-

terials. Fluorographene and chlorographene, engineered under ambient conditions [9, 10], are

highly stable thanks to the large electronegativity of fluorine and chlorine adsorbates [11]. In-

terestingly, in graphene halides, the binding of F- and Cl-atoms to the graphene surface leads to

covalent bonds that change the hybridization state from sp2 to sp3 [12]. However, carbon orbitals

retain their sp2 hybridization during the adsorption of bromine and iodine. A crucial impact of

halogens is in significantly decreasing the gap energy of their hydrogenated counterparts, making

the new derivatives suitable for channel materials [11]. Interestingly, diatomic halogen molecules

(I2, Br2) change carrier concentration in graphene without significant reduction of their mobility

near the Dirac point [13]. Fully co-decorated graphene sheets with chemical species such as HF

and HCl were also reported [14]. The resulting structures present a low level of disorder, high

stability and band-gaps of about 3eV. Many of these properties are shared with 2D counterparts of

graphene, such as silicene halides (see e.g. [15–18]). Interestingly, effective carrier masses in the

latter complex are comparable in certain directions to those of silicon and show a relatively high

mobility [19].

Our investigation is related to a relatively new 2D material, SiC, based on graphene and sil-

icene, so-called silicene-graphene, which has been recently synthesized [20], following theoretical

predictions [21]-[24]. SiC offers an alternative to overcome limitations associated with graphene

electronic technologies. For example, it has a non-zero direct band gap energy with a high ex-

citon binding energy Eb of 0.81eV as predicted by theory using GW built from localized density

approximation- [25]. The gap opening originates from the alternated arrangement of carbon and
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silicon in a two-dimensional honeycomb lattice which breaks the sublattice symmetry (see e.g.

[23]). Thus, SiC hybrid could also be a remarkable candidate for novel type of light-emitting

diodes as it shows improved photo-luminescence compared to its sphalerite or wurtzite counter-

parts [26].

Our interest is focused further on the ability to engineer excitons, which in nanostructures can

have large binding energies. These excited quasi-particles (QP) made of an electron bound to a

hole are pivotal in optoelectronic and thus, in photovoltaics, photoluminescence (see e.g. [27])

and potentially even in quantum information technology [28]. Excitons can be of the bright-type,

i.e. optically active and thus of strong interest, or of the dark-type, i.e. optically inactive. The

difference between the two types of excitons hinges on the spin-alignment of the electron and

of the hole. However as highlighted by Poem et al.[28], dark excitons could also be of use in

opto-applications directed towards quantum information technology.

Contrary to graphene and silicene, less attention has been devoted to functionalization of 2D-

SiC with atomic decoration. Interestingly, full hydrogenation of SiC, where H-atoms passivate

the surface via the unpaired electrons of the substrate atoms, yields to a buckled system with an

insulating character [23]. The new material was predicted to be mechanically stable with strong

resistance to the in-plane strains and shear waves can propagate faster than graphene along a

specific direction [29]. Partial hydrogenation, however, has the opposite effect on the electronic

structure since the gap is reduced in favor of ferromagnetism [23]. Similar to hydrogenation,

complete fluorination tailors electronic properties of SiC and semi-fluorination has the additional

advantage to induce novel magnetoelectric properties [30].

The goal of our work is to provide a first-principles based investigation of opto-electronic prop-

erties of 2D-SiC functionalized through halogenation. The latter allows tuning the band gap to-

gether with a generation of excitons having a high binding energy. Atomic decoration is made

with either F, Cl or a combination of both elements. For an accurate quantitative estimation of gap

energies of 2D materials required for practical applications, it is essential to utilize many-body

perturbation theory within GW approximation that goes beyond the usual approximations LDA

and GGA [31, 32]. Many-body effects, such as e-e correlations, included in the GW approxi-

mation correct the optical response, while e–h interactions as described in the framework of the

Bethe-Salpeter equation (BSE) are required for the excitonic effects [33].

We consider four configurations: (i) full fluorinated silicene/graphene hybrid (F-SiC-F), (ii)

full chlorinated hybrid (Cl-SiC-Cl), (iii) mixed Cl-SiC-F where F-atom decorate the carbon atoms
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while Cl-atom the silicon atoms and (iv) the opposite mixed configuration F-SiC-Cl. Phonon

frequencies analysis reveals the stability of all conformers. Our calculations demonstrate that

halogen-atoms can greatly enhance excitonic effects in silicene/graphene hybrid, where the bind-

ing energies of the four configurations are higher than of pristine. The highest exciton binding

energy of 1.75eV is found in F-SiC-Cl. We recall that bound excitons in fluorographene have a

large formation energy, 1.96eV, of bound excitons [34] compared to 1.25eV obtained for chloro-

graphene [35], while in fluorinated silicene, the binding energy is of 1.48eV [36]. The reflectivity

spectra demonstrate that these materials are transparent in the visible region.

II. COMPUTATIONAL DETAILS

To study phonon spectra, structural, electronic and optical properties of halogenated SiC, we

use the Quantum espresso (QE) simulation package [37] based on DFT and employing the GGA

functional of Perdew-Burke-Ernzerhof (PBE) [38]. A norm-conserving pseudo-potential descrip-

tion [39] is used. A kinetic energy cutoff of 65Ry was applied for the plane-wave basis. In the

Monkhorst-Pack grid, the Brillouin-zone integration was carried out at 16 × 16 × 1 k-points for

describing the band structure while the stabilities of structures are examined by calculating bind-

ing and formation energies and performing phonon dispersions using 20 × 20 × 1 k-points. The

optimized unit cell is obtained by minimizing the total energy as a function of the lattice parame-

ter. All the structures are relaxed using a criterion of forces and stresses on atoms; until the energy

change is smaller less than 10−4eV.

The energy band gap is corrected using non-self consistent GW calculations implemented in

YAMBO program suite [40]. In the GW approximation, the exchange-correlation potential Vxc

used in the DFT is replaced by a nonlocal, energy-dependent self-energy operator. The first order

quasiparticle (QP) corrections are obtained using Hedin [41] GW approximation, while excitonic

effects are treated by solving the Bethe-Salpeter equation (BSE) [33]. In our calculations of QP

energies, we use a 12×12×1 k-point mesh. The same mesh is used to evaluate the dielectric func-

tion in both the random phase approximation (RPA) [42] and in the Tamm-Dancoff approximation

[43] that considers only the resonant part of the BSE.

The charges of the ions were calculated according to Bader formalism that gives the charge of

each atom constituting the material by integrating over the gradient paths of its electronic density

[44].
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III. RESULTS AND DISCUSSION

FIG. 1: Top and side views of the fully relaxed structures showing interatomic distances.

Silicene-graphene hybrid is stable in a planar hexagonal lattice with all bond angles SiĈSi and

CŜiC equal to 120◦. The bond length C-Si of 1.78Å is bounded below by the one of graphene and

above by the one of silicene [21, 23]. In the following, we study full halogenated SiC where all the

species adopt a chair configuration because it is the most stable one with respect to zigzag, boat

and armchairs [18, 35].

Four structures in chair configuration, namely F-SiC-F, F-SiC-Cl, Cl-SiC-F and Cl-SiC-Cl, are

considered. As shown in Fig.1, full fluorinated (chlorinated) SiC referred as F-SiC-F (Cl-SiC-Cl),

are obtained by attaching F (Cl) atoms to C atoms in one side and to Si atoms in the opposite side

of the plane. In chlorosilicene-fluorographene hybrid, Cl-SiC-F, all carbon atoms are decorated by

fluorine atoms and all Si atoms bond chlorine atoms forming 1up/1down fashion on either side of

the sheet. In F-SiC-Cl, the role of coadsorbed F- and Cl-atoms are inverted.

Structure parameters, listed in Table 1, reveal that both C- and Si-atoms are displaced along

the normal direction from the plane of SiC layer as they are fourfold coordinated and form sp3

hybridization with their neighbors. As a consequence, the halogenated structures are buckled and

their bonds Si–C are stretched, ranging in between 7% and 10%, with respect to pure SiC hybrid.

The interatomic distances dF−C/dCl−C and dF−Si/dCl−Si, that increase with the increase of the atomic

number of halogen elements, are in line with data calculated for halogenated graphene [11] and

halogenated silicene [18].

Relative stability of configurations is studied first by evaluating their binding EB and formation

EF energies with respect to the energies of pure SiC and of the isolated molecules made of the
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Formers dSi−C dSi−ad dC−ad ∆ EB EF EGGA
gap EGW

gap Ee−h
b

Meff rBohr

Pure 1.78 - - 0.00 - - 2.52 3.53 1.05 0.53 2.14

F-SiC-F 1.91 1.64 1.45 0.56 −2.32 −1.45 1.87 4.47 1.74 0.40 2.34

F-SiC-Cl 1.93 1.62 1.84 0.53 −1.93 −1.05 1.89 4.71 1.75 0.40 2.24

Cl-SiC-F 1.95 2.04 1.45 0.54 −1.71 −0.83 2.05 4.26 0.9 0.22 4.40

Cl-SiC-Cl 1.96 2.04 1.84 0.57 −1.33 −0.44 2.25 4.38 1.31 0.26 3.36

TABLE I: Structural parameters and different energies characterizing the pure and the four types of deco-

rated SiC. The interatomic distances d, the buckling parameter ∆ and Bohr radius, rBohr, are given in Å. The

Binding energy EB, formation energy EF , gap energy Egap and excitonic binding Ee−h
b

energies are all in

eV while the effective mass of the exciton, Meff , is given in terms of the bare electron mass m0.

adsorbate. The corresponding energies are expressed as [45]:

EB =
1

N
[ET − ESiC − nadEad] and EF =

1

N

[
ET − ESiC −

1

2

(
nadEad2

)]
(1)

where N is the total number of atoms per unit cell, ET is the total energy of the (co)-decorated

structure and ESiC is the energy of pristine SiC, nad is the number of adsorbated atoms in the

supercell under consideration, Ead and Ead2
describe respectively the energy of an isolated adsorbed

atom and the energy of the corresponding molecule.

Data in Table 1 shows that all configurations have negative formation and binding energies.

Therefore, the structures are stable and the adsorptions are exothermic processes that could then

be synthesized in experiments. Fluorine adsorbed on SiC sheet generates the most stable structure

among halogen adsorbates. This result is in good agreement with previous works on halogenated

graphene and halogenated silicene [18, 35].

Fig.2 displays dispersions of phonon modes, which is a reliable test for the examination of

thermodynamic stability of halogenated SiC hybrids. The analysis of the curves shows that all

phonon branches do not have imaginary frequency along any high-symmetry direction of the Bril-

louin zone. This is a signature of stability of the four structures. Each phonon spectrum includes

12 phonon bands, 3 acoustic and 9 optical. Phonon frequencies soften monotonically from full

fluorinated to full chlorinated SiC due to the increasing atomic weight. It is observed that acoustic

and optical branches are separated by a band gap in F-SiC-F. As a result, it is rather difficult to

satisfy the energy conservation law during the phonon-phonon scattering between acoustic and

optical modes in this structure.
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FIG. 2: Frequencies of the phonon modes of halogenated SiC hybrids. The optical branches are shown in

red while the acoustical ones are in blue.

F-SiC-F Cl-SiC-Cl F-SiC-Cl Cl-SiC-F

C −0.96 −0.96 −0.96 −0.97

Si +3.86 +3.85 +3.85 +3.88

ad/C −0.69 −0.20 −0.14 −0.72

ad/Si −0.98 −0.97 −0.97 −0.97

TABLE II: Charge transfer involved in the four studied compounds: (+) sign denotes loss of electrons in

opposite to (-) sign.

To grasp the bonding nature among atoms, Table 2 summarizes values of charge transfer for the

four species calculated using Bader charge analysis. C-atoms are charge acceptors with ∼ 0.96e

obtained from their Si-surroundings. It follows that the bond between Si and C is ionic. Moreover,

the adsorbates gain an important amount of charge from their Si-atoms neighbor compared to the

smaller electrons density transferred from C-atoms. This behavior can be attributed to Pauling

electronegativities of F (3.98), Cl (3.16), C (2.55) and Si (1.9), since electrons are pulled away

from atoms having lower electronegativity towards atoms with a higher one. Except C-Cl that

forms a covalent bond, all the other bonds in the four configurations are ionic, which makes them

suitable for many applications, because ionic materials are strong, hard and also they have a high

melting point.

Electronic band structures displayed in Fig.3 and their corresponding gap energies given in

Table 1 are calculated employing two different theoretical approaches. Standard GGA-DFT for-

malism reveals that all the structures are semi-conductors with a direct gap located at the Γ point

in the Brillouin zone. The highest gap is found for Cl-SiC-Cl followed by Cl-SiC-F. The structures

F-SiC-Cl and F-SiC-F have smaller gap energies. After quasi-particle corrections using the GW

approximation, which is known to improve the gap description, the band gap becomes indirect
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FIG. 3: Band structures in Brillouin zone. Red solid squares and green circles correspond to GGA and GW

respectively. Energy is given with respect to the Fermi energy.

between Γ and M points in Cl-SiC-Cl conformer while it remains direct at Γ in the three other con-

figurations. The values of band gap obtained from GW are much larger than those obtained from

GGA. Moreover, the increasing sequence of the band gaps is completely inverted in comparison

to the GGA derived values since F-SiC-Cl and F-SiC-F have the highest gap energies of 4.71eV

and 4.47eV respectively followed by Cl-SiC-Cl and finally Cl-SiC-F.

FIG. 4: Isosurface charge densities plots describing CBM (upper) and VBM (lower) corresponding to the

four derivatives. The contour isovalue is set at 40%.

To gain further insights into the gaps character, partial density of states (PDOS) and charge

distribution describing the lowest conduction band (CBM) and the highest valence band (VBM)

are plotted. A first analysis of Fig.4 indicates that CBM mainly originates from orbitals of C and

Si atoms, while orbitals of halogen atoms contribute also to VBM. More precisely, the PDOS of

the four structures (see Fig.5) shows that the lower energy of CBM is dominated by p-electrons of

Si-atoms followed by C-atoms. However, the situation is quite different in VBM. Indeed, in F-SiC-

F, VBM is formed by p-orbitals corresponding to C-atoms, Si-atoms and fluorine that decorates
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C-atoms (referred as F/C-atoms). In Cl-SiC-Cl, both p-orbitals of C-atoms and Cl that bond C-

atoms (referred as Cl/C) contribute in VBM. In F-SiC-Cl, VBM consists mainly of Cl/C p-orbitals

followed by less involving of C-atoms. Finally, in Cl-SiC-F, VBM is mainly composed of p-

electrons of C- and Cl-atoms that are attached to Si (referred as Cl/Si).

FIG. 5: Projected density of states corresponding to s- and p-orbitals of atoms composing the hybrids. The

energy is given with respect to the Fermi energy.

In Fig.6 optical absorption spectra are depicted for light polarization along and perpendicular to

halogenated SiC sheets. Local field effects (LFE) are also considered using GGA and the Random

Phase Approximation (RPA). Similar to graphene [32] and pure GeC monolayer [46], when light

polarization is in-plane, LFE have no significant influence on the species except a very slight

reduction in their intensities. However, effects of local field are more important for out-of-plane

polarization. In this case, LFE shift optical absorption’s curves to higher frequencies and reduce

significantly the spectrum intensity in the four structures. Moreover, in presence of the local field,

the halogenated hybrids F-SiC-F, F-SiC-Cl, Cl-SiC-F and Cl-SiC-Cl are transparent below 2.04eV,

2.52eV, 2.24eV and 3.44eV respectively.

Optical absorption spectra are determined by the imaginary part of the macroscopic dielectric

function, Im [ε(ω)]. In the absence of LFE, Fig.7 displays Im [ε(ω)] calculated either without

electron–hole interaction (GW-RPA) or including excitonic effects from the solution of Bethe–

Salpeter equation (BSE). Only incident light polarized along x–direction is considered. The effec-

tive mass Me f f of the bright exciton is given by the expression [47]:

Me f f =
Ee−h

b

RH

ε2
r m0, (2)

where RH is the Rydberg energy, εr is the dielectric constant, m0 is the electron rest mass and

Ee−h
b

is the excitonic binding energy. The Bohr radius of this core exciton can also be calculated

with the following equation [47]

a =
εr

Me f f

aHm0, (3)
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FIG. 6: Local field effects (LFE) on optical absorption spectra for light polarized (top figures) parallel and

(down figures) perpendicular to the hybrids sheet calculated using GGA-RPA.

where aH is the Bohr radius of hydrogen atom.

The e-h correlations modify dramatically the optical spectra. More precisely, in the four config-

urations, excitonic absorption edges are red-shifted and the spectrum profile is completely different

compared to the GW-RPA spectrum with a main increase in its relative absorption intensity. In-

deed, the main part of the absorption spectra is shifted back to the GGA-RPA position but with an

important redistribution of the resonances due to correlations and for instance excitonic features,

which are inexistent in RPA.

FIG. 7: Imaginary part of macroscopic dielectric function of SiC hybrid calculated using both BSE and

GW-RPA.

The first absorption peak is observed at 2.73eV, 2.96eV and 3.36eV for F-SiC-F, F-SiC-Cl and

Cl-SiC-F respectively. It corresponds in the three cases to optically active (bright) excitonic state.

In the three halogenated structures, the strongly bound excitons result from vertical transitions

between the top of valence band (degenerated) to the bottom of conduction band at Γ-point. Thus,
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they are double degenerate. Their exciton binding energies, (defined as the difference between

the energy of optical excitation and electronic gap), their Bohr radius and their effective mass are

listed in Table 1. Notice that the exciton binding energy, corresponding to F-SiC-F, intermediates

between fluorographene with 1.96eV [34] and fluorosilicene having 1.48eV [36].

The situation is different for full chlorinated SiC that is a semiconductor with indirect band gap.

The first exciton observed in the optical spectrum is a dark exciton located at 3.04eV. This strongly

bound excitonic state has an e-h binding energy of 1.34eV and is due to the reversion of the

oscillator strength of the first active and the first inactive excitons when the light polarization

changes [48]. Furthermore, the first optically active (bright) exciton emerges at 3.07eV which

allowed vertical transitions from the top two valence bands to the bottom of conduction band at

Γ-point. This bright exciton is characterized by a binding energy of 1.31eV and an effective mass

of 0.26m0.

It follows full fluorination and full chlorination increase optical binding energy of pristine SiC

[25].

FIG. 8: Top and side view of electron probability distribution with hole position (black circle) fixed above

a C atom in F-SiC-F, F-SiC-Cl and Cl-SiC-F configurations.

Figs.8 and 9 plot electron probability distribution |ψ (re, rh)|2 to understand correlations between

excited quasi-electron and quasi-hole states in real space. The coordinate re refers to electron po-

sition and rh is the position of a hole placed slightly above a Si-atom. The electron-hole amplitude

Ψ(re; rh) is invariant to lattice vector shifts when applied simultaneously to re and rh.

In F-SiC-F and F-SiC-Cl, electron charge density is more localized around the hole with small

radius of 2.34Å and 2.24Å respectively compared to 3.36Å and 4.40Å obtained in Cl-SiC-Cl and

Cl-SiC-F where the exciton is delocalized along the material. So, halogenation increases signifi-

cantly the radius of the exciton radius of pure SiC. As shown in side view in Figs.8 and 9, charge
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FIG. 9: Top and side view of 2D projections of electron probability distribution in Cl-SiC-Cl structure

corresponding to 1- dark exciton and 2- bright exciton where the hole (black circle) is located above a

C-atom

transfer occurs mainly between C- atoms and their adsorbates in the four structures. This result

does not depend on the difference between electronegativities of the atoms as reported in [34] and

[48]. It follows that structures where carbon is decorated with Cl, namely F-SiC-Cl and Cl-SiC-Cl,

are promising candidates for possible excitonic Bose-Einstein condensation as proposed recently

in the graphane case [48].

Fig. 9 shows a damping behavior for the first exciton in Cl-SiC-Cl, that is of dark-type. An

identical damping nature of distribution is also observed for the bright exciton. This result reveals

a strong excitonic effect. Moreover, the electron distribution associated to the first bright exciton

is less localized and has a bigger radius compared to the one of fluorinated-SiC and of F-SiC-Cl.

This behavior of the electron probability distribution of first active and inactive excitons is mainly

due to their small binding energy of 1.31eV with respect to 1.74eV and 1.75eV obtained for F-

SiC-F and F-SiC-Cl respectively. As consequence, the spatial separation of electron and hole in

chlorinated SiC is the largest among the investigated materials.

Other optical quantities such as reflectivity, refractive index and electron-energy-loss function

are derived from the macroscopic dielectric function ε (ω) that is calculated using GW-BSE.

At normal incidence, Fresnel reflectivity R(ω) given by:

R (ω) =

∣∣∣∣∣∣

√
ε (ω) − 1√
ε (ω) + 1

∣∣∣∣∣∣
2

(4)

is plotted in Fig.10 (left) for the four configurations. It is evident that these compounds behave like

semiconductors since the R(ω) values are not approach to the unity towards zero energy. The zero
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FIG. 10: (left) Reflectivity, (center) refraction index and (right) energy loss function including excitonic

effects of halogenated SiC.

frequency reflectivity R(0) is 0.019%, 0.017%, 0.015%, and 0.022% for of F-SiC-F, F-SiC-Cl,

Cl-SiC-Cl, and Cl-SiC-F respectively. According to the reflectivity spectra these materials can be

transparent in the visible region in contrast to the ultraviolet region where more reflectivity occurs.

Fig.10 (center) displays the real part of the refractive index N given by N = n+ + in− where n+

and n− are refractive and extinction indexes calculated as follows:

n± (ω) =

√
1

2

(√
ℜε (ω)2

+ ℑε (ω)2 ±ℜε (ω)

)
. (5)

It is found that the static refraction index at zero energy takes the value of 1.32, 1.30, 1.28 and

1.35 for F-SiC-F, F-SiC-Cl, Cl-SiC-Cl, and Cl-SiC-F respectively. These values are smaller than

1.48 calculated for silicon-doped graphene [49]. In all configurations, the corresponding refraction

index is minimum where absorption is maximum. Moreover, it is obvious that the obtained values

are inversely proportional to the energy of direct band gap.

Finally, Fig.10 (right) presents energy-loss spectrum L(ω), another important optical charac-

teristic that describes the energy loss of a fast electron crossing the material. It is shown that the

plasmon peak occurs at 8.20 eV, 11.26eV, 8.44eV, and 7.97 eV for F-SiC-F, F-SiC-Cl, Cl-SiC-Cl,

and Cl-SiC-F respectively which corresponds to a rapid decrease of reflectance in agreement with

Fig.10 (left). Moreover, the collective excitation is the point of transition from the metallic to

dielectric property as each material exhibits dielectric behavior above the plasmon frequency in

contrast to the metallic behavior below the plasmon frequency. Notice also that the direct band

gap correlates with the plasmon frequency.
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IV. CONCLUSION

In summary, we have studied structural, electronic and optical properties of four halogenated

SiC conformers, namely F-SiC-F, Cl-SiC-Cl, F-SiC-Cl, and Cl-SiC-F. Phonon dispersion and

binding energies reveal that all the structures are stable which imply their possible fabrication

and realization in laboratory. Whereas GGA-DFT calculations show that halogenation causes gap

energy of SiC to decrease with respect to the pristine case, GW calculations give larger band gaps

for SiC halides. The band gap is indirect in Cl-SiC-Cl and direct at Γ in the three other config-

urations. The resulting absorption spectra demonstrate substantial redshifts and enhancement of

absorption peaks compared to the calculated spectra neglecting excitonic effects. Except Cl-SiC-F

that exhibits an exciton binding energy rather similar to that of pristine SiC, F-SiC-F, Cl-SiC-Cl

and F-SiC-Cl structures have huge binding energy. The strong excitonic effect in halogenated SiC

makes these materials desirable for opto-electronics applications. Moreover, the charge transfer

from carbon to chlorine in F-SiC-Cl and full chlorinated SiC suggest them as promising candidates

for the Bose-Einstein condensation [48]. The direct controllable band gaps and the high binding

energies make these materials suitable for optoelctronic applications such as, solar cell, LED, and

batteries while their lower refractive index make them promising for applications in anti-reflection

coatings and high-reflective systems.
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