000838620 001__ 838620
000838620 005__ 20240711085630.0
000838620 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2017.07.019
000838620 0247_ $$2Handle$$a2128/15855
000838620 0247_ $$2WOS$$aWOS:000411296700034
000838620 037__ $$aFZJ-2017-07197
000838620 082__ $$a660
000838620 1001_ $$0P:(DE-HGF)0$$aCorson, L. Cramer$$b0$$eCorresponding author
000838620 245__ $$aContinuous functionally graded material to improve the thermoelectric properties of ZnO
000838620 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000838620 3367_ $$2DRIVER$$aarticle
000838620 3367_ $$2DataCite$$aOutput Types/Journal article
000838620 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510579187_28469
000838620 3367_ $$2BibTeX$$aARTICLE
000838620 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838620 3367_ $$00$$2EndNote$$aJournal Article
000838620 520__ $$aFunctionally graded material (FGM) in terms of grain size gradation is fabricated from ZnO with a combination of modified Spark Plasma Sintering (SPS) graphite tooling, water sintering enhancements through transient liquid phase surface transport, and strategic SPS mechanical loading. The grain size gradation of the ZnO FGM spans from 180 nm grains to 1.2 micrometers in a fully dense material. This is the first semiconductor or ceramic to be graded microstructurally to this extent. Predictions of the microstructure with a Master Sintering Curve (MSC) approach were done with a series of isothermal experiments on two different FGM conditions revealing a slight offset due to a constrained mechanism. The mechanical properties were tested with Vickers micro hardness across the sample, showing a gradient in hardness from 2.6 GPa to 4.2 GPa. In addition, the thermoelectric properties of the FGM were measured and show a zT of 2 × 10−5 at 100 °C compared to uniform small- and large-grained samples of 1 × 10−6. This is an order of magnitude difference making a new path for improvements of bulk thermoelectric material.
000838620 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000838620 7001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b1
000838620 7001_ $$0P:(DE-HGF)0$$aColasuonno, Paul S.$$b2
000838620 7001_ $$0P:(DE-HGF)0$$aHolland, Troy B.$$b3
000838620 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2017.07.019$$n15$$p4693-4700$$tJournal of the European Ceramic Society$$v37$$x0955-2219$$y2017
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20material%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO.pdf$$yRestricted
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO_Final%20version.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20material%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO.gif?subformat=icon$$xicon$$yRestricted
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20material%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20material%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20material%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20material%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO_Final%20version.gif?subformat=icon$$xicon$$yOpenAccess$$zStatID:(DE-HGF)0510
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO_Final%20version.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess$$zStatID:(DE-HGF)0510
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO_Final%20version.jpg?subformat=icon-180$$xicon-180$$yOpenAccess$$zStatID:(DE-HGF)0510
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO_Final%20version.jpg?subformat=icon-640$$xicon-640$$yOpenAccess$$zStatID:(DE-HGF)0510
000838620 8564_ $$uhttps://juser.fz-juelich.de/record/838620/files/Continuous%20functionally%20graded%20to%20improve%20the%20thermoelectric%20properties%20of%20ZnO_Final%20version.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000838620 909CO $$ooai:juser.fz-juelich.de:838620$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000838620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b1$$kFZJ
000838620 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000838620 9141_ $$y2017
000838620 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838620 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838620 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838620 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2015
000838620 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838620 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838620 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838620 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838620 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838620 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838620 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838620 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838620 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838620 920__ $$lyes
000838620 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000838620 9801_ $$aFullTexts
000838620 980__ $$ajournal
000838620 980__ $$aVDB
000838620 980__ $$aUNRESTRICTED
000838620 980__ $$aI:(DE-Juel1)IEK-1-20101013
000838620 981__ $$aI:(DE-Juel1)IMD-2-20101013