000838660 001__ 838660
000838660 005__ 20210129231620.0
000838660 0247_ $$2doi$$a10.1038/s41598-017-14176-4
000838660 0247_ $$2Handle$$a2128/15700
000838660 0247_ $$2pmid$$apmid:29066757
000838660 0247_ $$2WOS$$aWOS:000413597800030
000838660 0247_ $$2altmetric$$aaltmetric:28164778
000838660 037__ $$aFZJ-2017-07229
000838660 082__ $$a000
000838660 1001_ $$0P:(DE-Juel1)156374$$aKovermann, Peter$$b0
000838660 245__ $$aImpaired K+ binding to glial glutamate transporter EAAT1 in migraine
000838660 260__ $$aLondon$$bNature Publishing Group$$c2017
000838660 3367_ $$2DRIVER$$aarticle
000838660 3367_ $$2DataCite$$aOutput Types/Journal article
000838660 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509022162_28196
000838660 3367_ $$2BibTeX$$aARTICLE
000838660 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838660 3367_ $$00$$2EndNote$$aJournal Article
000838660 520__ $$aSLC1A3 encodes the glial glutamate transporter hEAAT1, which removes glutamate from the synaptic cleft via stoichiometrically coupled Na+-K+-H+-glutamate transport. In a young man with migraine with aura including hemiplegia, we identified a novel SLC1A3 mutation that predicts the substitution of a conserved threonine by proline at position 387 (T387P) in hEAAT1. To evaluate the functional effects of the novel variant, we expressed the wildtype or mutant hEAAT1 in mammalian cells and performed whole-cell patch clamp, fast substrate application, and biochemical analyses. T387P diminishes hEAAT1 glutamate uptake rates and reduces the number of hEAAT1 in the surface membrane. Whereas hEAAT1 anion currents display normal ligand and voltage dependence in cells internally dialyzed with Na+-based solution, no anion currents were observed with internal K+. Fast substrate application demonstrated that T387P abolishes K+-bound retranslocation. Our finding expands the phenotypic spectrum of genetic variation in SLC1A3 and highlights impaired K+ binding to hEAAT1 as a novel mechanism of glutamate transport dysfunction in human disease.
000838660 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000838660 588__ $$aDataset connected to CrossRef
000838660 7001_ $$0P:(DE-HGF)0$$aHessel, Margarita$$b1
000838660 7001_ $$0P:(DE-Juel1)157846$$aKortzak, Daniel$$b2
000838660 7001_ $$00000-0002-2319-7032$$aJen, Joanna C.$$b3
000838660 7001_ $$0P:(DE-HGF)0$$aKoch, Johannes$$b4
000838660 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b5
000838660 7001_ $$0P:(DE-HGF)0$$aFreilinger, Tobias$$b6$$eCorresponding author
000838660 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-017-14176-4$$gVol. 7, no. 1, p. 13913$$n1$$p13913$$tScientific reports$$v7$$x2045-2322$$y2017
000838660 8564_ $$uhttps://juser.fz-juelich.de/record/838660/files/s41598-017-14176-4.pdf$$yOpenAccess
000838660 8564_ $$uhttps://juser.fz-juelich.de/record/838660/files/s41598-017-14176-4.gif?subformat=icon$$xicon$$yOpenAccess
000838660 8564_ $$uhttps://juser.fz-juelich.de/record/838660/files/s41598-017-14176-4.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838660 8564_ $$uhttps://juser.fz-juelich.de/record/838660/files/s41598-017-14176-4.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838660 8564_ $$uhttps://juser.fz-juelich.de/record/838660/files/s41598-017-14176-4.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838660 8564_ $$uhttps://juser.fz-juelich.de/record/838660/files/s41598-017-14176-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838660 909CO $$ooai:juser.fz-juelich.de:838660$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000838660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156374$$aForschungszentrum Jülich$$b0$$kFZJ
000838660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157846$$aForschungszentrum Jülich$$b2$$kFZJ
000838660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b5$$kFZJ
000838660 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000838660 9141_ $$y2017
000838660 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838660 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000838660 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838660 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000838660 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000838660 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000838660 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838660 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838660 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838660 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838660 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838660 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838660 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838660 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838660 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838660 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838660 920__ $$lyes
000838660 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000838660 9801_ $$aFullTexts
000838660 980__ $$ajournal
000838660 980__ $$aVDB
000838660 980__ $$aUNRESTRICTED
000838660 980__ $$aI:(DE-Juel1)ICS-4-20110106
000838660 981__ $$aI:(DE-Juel1)IBI-1-20200312