001     838680
005     20240708132728.0
037 _ _ |a FZJ-2017-07246
041 _ _ |a English
100 1 _ |a Unije, Unoaku Victoria
|0 P:(DE-Juel1)164278
|b 0
|e Corresponding author
111 2 _ |a 8th International Conference on Multiscale Materials Modelling
|g MMM 2016
|c Dijon
|d 2016-10-09 - 2016-10-14
|w France
245 _ _ |a Modelling the Support Effect on the Flux Through an Asymmetric Oxygen Transport Gas Separation Membranes
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1510224468_17659
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Oxygen Transport Membranes (OTM) display a new technology for energy-efficient oxygen generation which can be used in low-pollutant power plants and oxygen generators or membrane reactors in the chemical industry and health care. Low ionic resistance of the membrane and high mechanical stability typically demands the usage of an asymmetric design comprising a thin functional membrane and a thicker porous support. The overall membrane performance is strongly affected by the microstructure of this porous structural layer. The effect of the support on the flux performance has been thus studied applying the Binary Friction Model (BFM, including binary and Knudsen diffusion and viscous flow) for the support together with a modified Wagner equation for the dense membrane. The parameters describing the tape-cast porous medium were obtained by numerical diffusion and flow simulations based on micro computed tomography (µCT) data. Using different flow conditions (3-end, 4-end) and oxygen as feed gas, the effect of the support thickness, pore diameter, position (either on the feed or permeate side) of the support on the flux were investigated. Knudsen diffusion was found to dominate the transport process for small pore sizes (~2µm) in particular for the 3-end mode with the support on the permeate side being most pore size sensitive, whereas for the other configurations the viscous flow was of higher significance. For typical membrane assembly geometry with a membrane thickness of 20 µm and a support thickness of 0.9 mm, the flux became membrane limited starting from a pore size of approx. 5 µm.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 1
|u fzj
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 2
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:838680
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21