000838683 001__ 838683
000838683 005__ 20240708132728.0
000838683 037__ $$aFZJ-2017-07249
000838683 041__ $$aEnglish
000838683 1001_ $$0P:(DE-Juel1)164278$$aUnije, Unoaku Victoria$$b0$$eCorresponding author$$ufzj
000838683 1112_ $$a2017 International Congress on Membranes and Membrane Processes$$cSan Francisco$$d2017-07-29 - 2017-08-04$$gICOM 2017$$wUSA
000838683 245__ $$aOptimization of the porous support of an asymmetric oxygen transport membrane by numerical modelling
000838683 260__ $$c2017
000838683 3367_ $$033$$2EndNote$$aConference Paper
000838683 3367_ $$2DataCite$$aOther
000838683 3367_ $$2BibTeX$$aINPROCEEDINGS
000838683 3367_ $$2DRIVER$$aconferenceObject
000838683 3367_ $$2ORCID$$aLECTURE_SPEECH
000838683 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1510321553_27060$$xAfter Call
000838683 502__ $$cRWTH Aachen
000838683 520__ $$aAsymmetric oxygen transport membranes (OTM) provide a low ionic resistance of the functional separation layer together with a high mechanical stability. Hence, they are promising candidates for high-permeation in a variety of high-temperature applications for the separation of oxygen from gas mixtures. However, the microstructure of the porous support in the membrane assembly affects the overall flux significantly [1].In this work, the optimization of the porous support was studied by simulating numerically the effect of geometrical changes (pore size, pore geometry, substrate thicknesses) of the support on the overall flux, using different flow conditions (3-end, 4-end), and assembly orientation [2]. These effects were studied by applying the binary friction model (BFM) for the support together with a modified Wagner equation for the dense membrane using transport relevant parameters obtained from micro computed tomography data of a BSCF-Z support. Additionally, the effect of the support geometry and the depth of travel of the sweep gas on the permeated flux were investigated by computational fluid dynamics using Ansys Fluent. From the CFD simulation, u-shaped pores are more desirable for inverse tape cast porous support and enables quick removal of the permeated gas. Supports with elongated pores would be ideal for 4-end mode (binary diffusion limited configurations/gas mixtures e.g. membrane reactors) transport, while for oxygen generation from air (3-end), supports with either compressed or elongated pores are comparable (rel. difference < ~7%). A relationship between the opposing factors substrate thickness and pore size was developed that ensures a given flux. This can be used to optimize support’s microstructure with regards to mechanical strength and permeability. [1] P. Niehoff, et al. Oxygen transport through supported Ba0.5Sr0.5Co0.8Fe0.2O3–d membranes, Sep.Purif Technol, 121(2014)60-67.[2] U. Unije, et al. Simulation of the effect of the porous support on flux through an asymmetric oxygen transport membrane, J.Membrane Sci., 524(2017)334-343.
000838683 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000838683 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000838683 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000838683 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b1$$ufzj
000838683 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b2$$ufzj
000838683 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b3$$ufzj
000838683 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000838683 909CO $$ooai:juser.fz-juelich.de:838683$$pVDB
000838683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164278$$aForschungszentrum Jülich$$b0$$kFZJ
000838683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b1$$kFZJ
000838683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b2$$kFZJ
000838683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b3$$kFZJ
000838683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000838683 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000838683 9141_ $$y2017
000838683 920__ $$lyes
000838683 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000838683 980__ $$aconf
000838683 980__ $$aVDB
000838683 980__ $$aI:(DE-Juel1)IEK-1-20101013
000838683 980__ $$aUNRESTRICTED
000838683 981__ $$aI:(DE-Juel1)IMD-2-20101013