001     838685
005     20240708132728.0
037 _ _ |a FZJ-2017-07251
041 _ _ |a English
100 1 _ |a Unije, Unoaku Victoria
|0 P:(DE-Juel1)164278
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Geodict Usermeeting 2017
|c Kaiserslautern
|d 2017-09-26 - 2017-09-27
|w Germany
245 _ _ |a The effect of two different support microstructure of an asymmetric membrane with comparable porosities on flux
260 _ _ |c 2017
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1510224504_17656
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Oxygen transport membranes (OTM) display a new technology for the generation of energy-efficient oxygen. These membranes can be used in low-pollutant power plants and oxygen generators or membrane reactors in the chemical industry and health care. Research studies over the years have found that the thinner the dense membrane, the higher the observed flux, but the lower the mechanical stability. This motivated the state of the art processing of an asymmetric membrane; whereby the thin dense membrane is supported by a porous structure. However, the microstructure of the porous support in the membrane assembly affects the overall flux significantly. To study and optimize this effect, tape cast and freeze cast Ba0.5Sr0.5(Co0.8Fe0.2)0.97Zr0.03O3– (BSCFZ) asymmetric membranes having comparable support porosities but different pore architecture were processed. Permeation measurements showed that the flux from the two membranes yielded comparable flux, which is not in agreement to literature.A computer tomography of the membranes was acquired to understand, simulate and optimize the porous support. This effect was simulated by applying the binary friction model (BFM) for the support together with a modified Wagner equation for the dense membrane, using transport relevant parameters obtained from computer tomography data of the freeze cast, and tape cast support using Geodict software.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Mücke, R.
|0 P:(DE-Juel1)129641
|b 1
|u fzj
700 1 _ |a Schulze-Küppers, F.
|0 P:(DE-Juel1)129660
|b 2
|u fzj
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 3
|u fzj
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:838685
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21