001     838697
005     20240712101020.0
024 7 _ |a 10.1039/C7CP05132H
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a pmid:29057418
|2 pmid
024 7 _ |a WOS:000414243300016
|2 WOS
037 _ _ |a FZJ-2017-07258
082 _ _ |a 540
100 1 _ |a Vereecken, Luc
|0 P:(DE-Juel1)167140
|b 0
|e Corresponding author
245 _ _ |a The reaction of Criegee intermediates with acids and enols
260 _ _ |a Cambridge
|c 2017
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1509623082_7894
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The reaction of CH2OO, the smallest carbonyl oxide (Criegee intermediate, CI), with several acids was investigated using the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ quantum chemical method, as well as microvariational transition state theory and RRKM master equation theoretical kinetic methodologies. For oxoacids HNO3 and HCOOH, a 1,4-insertion mechanism allows for barrierless reactions with high rate coefficients, in agreement with literature experimental data. This mechanism relies on the presence of a double bond in the α-position to the acidic OH group. We predict that reactions of CI with enols will likewise have high rate coefficients, proceeding through a similar mechanism. The hydracid HCl was found to react through a less favorable 1,2-insertion reaction, leading to lower rate coefficients, again in good agreement with the literature. We conclude that the reaction mechanism is the main indicator for the reaction rate for CH2OO + acid reactions, with acidity only of secondary influence. At room temperature and 1 atm the main product for all reactions was found to be the thermalized hydroperoxide initial adduct, with minor yields of fragmentation products. One of the product channels characterized is a novel reaction path involving intramolecular H-abstraction after a roaming reaction in the OH + product radical complex formed by the dissociation of the hydroperoxide adduct; this channel is the lowest fragmentation route for some of the reactions studied.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1039/C7CP05132H
|g p. 10.1039.C7CP05132H
|0 PERI:(DE-600)1476244-4
|n 42
|p 28630-28640
|t Physical chemistry, chemical physics
|v 19
|y 2017
|x 1463-9084
856 4 _ |u https://juser.fz-juelich.de/record/838697/files/c7cp05132h.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838697/files/c7cp05132h.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838697/files/c7cp05132h.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838697/files/c7cp05132h.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838697/files/c7cp05132h.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838697/files/c7cp05132h.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838697
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167140
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21