000838704 001__ 838704
000838704 005__ 20240712100953.0
000838704 0247_ $$2doi$$a10.5194/bg-2017-260
000838704 0247_ $$2ISSN$$a1810-6277
000838704 0247_ $$2ISSN$$a1810-6285
000838704 0247_ $$2Handle$$a2128/15733
000838704 0247_ $$2altmetric$$aaltmetric:21505010
000838704 037__ $$aFZJ-2017-07265
000838704 082__ $$a570
000838704 1001_ $$0P:(DE-Juel1)145715$$aWu, Cheng$$b0$$ufzj
000838704 245__ $$a13C labelling study of constitutive and stress-induced terpenoide missions from Norway spruce and Scots pine
000838704 260__ $$aKatlenburg-Lindau [u.a.]$$bCopernicus$$c2017
000838704 3367_ $$2DRIVER$$aarticle
000838704 3367_ $$2DataCite$$aOutput Types/Journal article
000838704 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509634207_7902
000838704 3367_ $$2BibTeX$$aARTICLE
000838704 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838704 3367_ $$00$$2EndNote$$aJournal Article
000838704 520__ $$aDue to their large source strengths, biogenic volatile organic compounds (BVOCs) are important for atmospheric chemistry. Terpenoids, mainly consisting of isoprene, monoterpenes and sesquiterpenes, are the dominant BVOC class. There are two general mechanisms for their emissions: emissions directly from de novo biosynthesis (de novo emissions) and emissions from organs wherein the terpenoids are stored (pool emissions). While isoprene emissions are pure de novo emissions, the mechanism for monoterpene and sesquiterpene emissions is not always distinct. In particular, conifers have large storage pools and both mechanisms may contribute to the emissions.To obtain more insight into the mechanisms of the terpenoid emissions from Eurasian conifers, we conducted 13CO2 and 13C-glucose labelling studies with Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.). The results from the labelling experiments were further compared to diurnal modulations measured for the emission fluxes of the respective terpenoids, as well as to their release from reservoirs in needles and bark tissue.The comparison allowed the following comprehensive statements for the investigated conifers. Consistent to other studies, we found that constitutive monoterpene emissions mainly originate from storage pools but with compound-specific fractions of de novo emissions. In contrast, stress-induced monoterpene and sesquiterpene emissions are entirely of de novo nature. We also found at least three different carbon sources for monoterpene and sesquiterpene biosynthesis. These sources differ with respect to the timescale after which the recently assimilated carbon reappears in the emitted terpenoids. Carbon directly obtained from assimilated has a short turnover time of few hours, while carbon from other alternative carbon sources has intermediate turnover times of few days and even longer. Terpenoid biosynthesis is not restricted to the presence of light and the carbon for terpenoid biosynthesis can be delivered from the alternative carbon sources. In particular for sesquiterpenes, there can be substantial de novo emissions in darkness reaching up to around 60 % of the daytime emissions. The use of the alternative carbon sources for sesquiterpene synthesis is probably linked to the mevalonic acid (MVA) pathway. The higher the contribution of the MVA pathway to terpenoid synthesis, the higher is the nocturnal de novo emission.In general, the emission mechanisms of monoterpene and sesquiterpene are more complex than assumed so far. Besides pools for terpenoids themselves, there are also pools for terpenoids precursors. Terpenoid synthesis from alternative carbon sources leads to nighttime emissions and hence the amplitude of diurnal modulations of terpenoid emissions may be determined by an overlap of three mechanisms involved: emissions from storage pools, emissions in parallel to CO2 uptake and emissions from alternative carbon sources.
000838704 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000838704 588__ $$aDataset connected to CrossRef
000838704 7001_ $$0P:(DE-Juel1)156385$$aPullinen, Iida$$b1
000838704 7001_ $$0P:(DE-Juel1)6627$$aAndres, Stefanie$$b2$$ufzj
000838704 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b3$$ufzj
000838704 7001_ $$0P:(DE-Juel1)129345$$aKleist, Einhard$$b4$$ufzj
000838704 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b5
000838704 7001_ $$0P:(DE-Juel1)129421$$aWildt, Jürgen$$b6$$ufzj
000838704 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b7$$eCorresponding author$$ufzj
000838704 773__ $$0PERI:(DE-600)2146550-2$$a10.5194/bg-2017-260$$gp. 1 - 29$$p1 - 29$$tBiogeosciences discussions$$v260$$x1810-6285$$y2017
000838704 8564_ $$uhttps://juser.fz-juelich.de/record/838704/files/bg-2017-260.pdf$$yOpenAccess
000838704 8564_ $$uhttps://juser.fz-juelich.de/record/838704/files/bg-2017-260.gif?subformat=icon$$xicon$$yOpenAccess
000838704 8564_ $$uhttps://juser.fz-juelich.de/record/838704/files/bg-2017-260.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838704 8564_ $$uhttps://juser.fz-juelich.de/record/838704/files/bg-2017-260.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838704 8564_ $$uhttps://juser.fz-juelich.de/record/838704/files/bg-2017-260.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838704 8564_ $$uhttps://juser.fz-juelich.de/record/838704/files/bg-2017-260.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838704 909CO $$ooai:juser.fz-juelich.de:838704$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000838704 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145715$$aForschungszentrum Jülich$$b0$$kFZJ
000838704 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6627$$aForschungszentrum Jülich$$b2$$kFZJ
000838704 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b3$$kFZJ
000838704 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich$$b4$$kFZJ
000838704 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b5$$kFZJ
000838704 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129421$$aForschungszentrum Jülich$$b6$$kFZJ
000838704 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b7$$kFZJ
000838704 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000838704 9141_ $$y2017
000838704 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838704 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838704 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838704 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838704 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838704 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838704 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838704 920__ $$lyes
000838704 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000838704 9801_ $$aFullTexts
000838704 980__ $$ajournal
000838704 980__ $$aVDB
000838704 980__ $$aUNRESTRICTED
000838704 980__ $$aI:(DE-Juel1)IEK-8-20101013
000838704 981__ $$aI:(DE-Juel1)ICE-3-20101013