000838726 001__ 838726
000838726 005__ 20240711113829.0
000838726 0247_ $$2doi$$a10.1088/1402-4896/aa8ff3
000838726 0247_ $$2ISSN$$a0031-8949
000838726 0247_ $$2ISSN$$a1402-4896
000838726 0247_ $$2WOS$$aWOS:000414120500051
000838726 0247_ $$2altmetric$$aaltmetric:28182445
000838726 037__ $$aFZJ-2017-07286
000838726 082__ $$a530
000838726 1001_ $$00000-0003-4277-6766$$aEksaeva, A.$$b0$$eCorresponding author
000838726 245__ $$aERO modeling of Cr sputtering in the linear plasma device PSI-2
000838726 260__ $$aBristol$$bIoP Publ.$$c2017
000838726 3367_ $$2DRIVER$$aarticle
000838726 3367_ $$2DataCite$$aOutput Types/Journal article
000838726 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509631598_7901
000838726 3367_ $$2BibTeX$$aARTICLE
000838726 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838726 3367_ $$00$$2EndNote$$aJournal Article
000838726 520__ $$aThe prediction of the first wall deterioration and possible plasma contamination by impurities is a high priority task for ITER. 3D Monte-Carlo code ERO is a tool for modeling of eroded impurity transport and spectroscopy in plasma devices useful for experiment interpretation. Chromium (Cr) is a fusion-relevant reactor wall element (e.g. component of RAFM steels expected for use in DEMO). Linear plasma devices including PSI-2 are effective tools for investigations of plasma-surface interaction effects, allowing continuous plasma operation and good control over irradiation parameters. Experiments on Cr sputtering were conducted at PSI-2. In these experiments the Cr erosion was measured by three techniques: mass loss of the sample, quartz micro-balance of deposited impurities at a distance from it and optical emission spectroscopy. Experiments were modeled with the 3D Monte-Carlo code ERO, previously validated by application to similar experiments with tungsten (W). The simulations are demonstrated to reproduce the main experimental outcomes proving the quality of the sputtering data used. A significant focuses of the paper is the usage and validation of atomic data (resent metastable-resolved dataset from ADAS) for interpretation of Cr spectroscopy. Initial population of quasi-metastable state was fitted by matching the modeling with the experimental line intensity profiles.
000838726 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000838726 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000838726 588__ $$aDataset connected to CrossRef
000838726 7001_ $$0P:(DE-Juel1)7884$$aBorodin, D.$$b1
000838726 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b2
000838726 7001_ $$00000-0002-3119-4827$$aNishijima, D.$$b3
000838726 7001_ $$0P:(DE-Juel1)130122$$aPospieszczyk, A.$$b4
000838726 7001_ $$0P:(DE-Juel1)130142$$aSchlummer, T.$$b5
000838726 7001_ $$0P:(DE-Juel1)169120$$aErtmer, S.$$b6
000838726 7001_ $$0P:(DE-Juel1)130166$$aTerra, A.$$b7
000838726 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b8
000838726 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b9
000838726 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b10
000838726 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b11
000838726 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b12
000838726 7001_ $$0P:(DE-HGF)0$$aHenderson, S.$$b13
000838726 7001_ $$0P:(DE-HGF)0$$aO’Mullane, M.$$b14
000838726 7001_ $$0P:(DE-HGF)0$$aSummers, H.$$b15
000838726 7001_ $$0P:(DE-HGF)0$$aBluteau, M.$$b16
000838726 7001_ $$0P:(DE-HGF)0$$aMarenkov, E.$$b17
000838726 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/aa8ff3$$gVol. T170, p. 014051 -$$p014051 -$$tPhysica scripta$$vT170$$x1402-4896$$y2017
000838726 8564_ $$uhttps://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.pdf$$yRestricted
000838726 8564_ $$uhttps://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.gif?subformat=icon$$xicon$$yRestricted
000838726 8564_ $$uhttps://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838726 8564_ $$uhttps://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838726 8564_ $$uhttps://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838726 8564_ $$uhttps://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838726 909CO $$ooai:juser.fz-juelich.de:838726$$pVDB
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b1$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b2$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130122$$aForschungszentrum Jülich$$b4$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130142$$aForschungszentrum Jülich$$b5$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169120$$aForschungszentrum Jülich$$b6$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130166$$aForschungszentrum Jülich$$b7$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b8$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b9$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b10$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b11$$kFZJ
000838726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b12$$kFZJ
000838726 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000838726 9141_ $$y2017
000838726 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838726 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000838726 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838726 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838726 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838726 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838726 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838726 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838726 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838726 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000838726 980__ $$ajournal
000838726 980__ $$aVDB
000838726 980__ $$aI:(DE-Juel1)IEK-4-20101013
000838726 980__ $$aUNRESTRICTED
000838726 981__ $$aI:(DE-Juel1)IFN-1-20101013