Hauptseite > Publikationsdatenbank > ERO modeling of Cr sputtering in the linear plasma device PSI-2 > print |
001 | 838726 | ||
005 | 20240711113829.0 | ||
024 | 7 | _ | |a 10.1088/1402-4896/aa8ff3 |2 doi |
024 | 7 | _ | |a 0031-8949 |2 ISSN |
024 | 7 | _ | |a 1402-4896 |2 ISSN |
024 | 7 | _ | |a WOS:000414120500051 |2 WOS |
024 | 7 | _ | |a altmetric:28182445 |2 altmetric |
037 | _ | _ | |a FZJ-2017-07286 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Eksaeva, A. |0 0000-0003-4277-6766 |b 0 |e Corresponding author |
245 | _ | _ | |a ERO modeling of Cr sputtering in the linear plasma device PSI-2 |
260 | _ | _ | |a Bristol |c 2017 |b IoP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1509631598_7901 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The prediction of the first wall deterioration and possible plasma contamination by impurities is a high priority task for ITER. 3D Monte-Carlo code ERO is a tool for modeling of eroded impurity transport and spectroscopy in plasma devices useful for experiment interpretation. Chromium (Cr) is a fusion-relevant reactor wall element (e.g. component of RAFM steels expected for use in DEMO). Linear plasma devices including PSI-2 are effective tools for investigations of plasma-surface interaction effects, allowing continuous plasma operation and good control over irradiation parameters. Experiments on Cr sputtering were conducted at PSI-2. In these experiments the Cr erosion was measured by three techniques: mass loss of the sample, quartz micro-balance of deposited impurities at a distance from it and optical emission spectroscopy. Experiments were modeled with the 3D Monte-Carlo code ERO, previously validated by application to similar experiments with tungsten (W). The simulations are demonstrated to reproduce the main experimental outcomes proving the quality of the sputtering data used. A significant focuses of the paper is the usage and validation of atomic data (resent metastable-resolved dataset from ADAS) for interpretation of Cr spectroscopy. Initial population of quasi-metastable state was fitted by matching the modeling with the experimental line intensity profiles. |
536 | _ | _ | |a 174 - Plasma-Wall-Interaction (POF3-174) |0 G:(DE-HGF)POF3-174 |c POF3-174 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Borodin, D. |0 P:(DE-Juel1)7884 |b 1 |
700 | 1 | _ | |a Kreter, A. |0 P:(DE-Juel1)130070 |b 2 |
700 | 1 | _ | |a Nishijima, D. |0 0000-0002-3119-4827 |b 3 |
700 | 1 | _ | |a Pospieszczyk, A. |0 P:(DE-Juel1)130122 |b 4 |
700 | 1 | _ | |a Schlummer, T. |0 P:(DE-Juel1)130142 |b 5 |
700 | 1 | _ | |a Ertmer, S. |0 P:(DE-Juel1)169120 |b 6 |
700 | 1 | _ | |a Terra, A. |0 P:(DE-Juel1)130166 |b 7 |
700 | 1 | _ | |a Unterberg, B. |0 P:(DE-Juel1)6784 |b 8 |
700 | 1 | _ | |a Kirschner, A. |0 P:(DE-Juel1)2620 |b 9 |
700 | 1 | _ | |a Romazanov, J. |0 P:(DE-Juel1)165905 |b 10 |
700 | 1 | _ | |a Brezinsek, S. |0 P:(DE-Juel1)129976 |b 11 |
700 | 1 | _ | |a Rasinski, M. |0 P:(DE-Juel1)162160 |b 12 |
700 | 1 | _ | |a Henderson, S. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a O’Mullane, M. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Summers, H. |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Bluteau, M. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Marenkov, E. |0 P:(DE-HGF)0 |b 17 |
773 | _ | _ | |a 10.1088/1402-4896/aa8ff3 |g Vol. T170, p. 014051 - |0 PERI:(DE-600)1477351-x |p 014051 - |t Physica scripta |v T170 |y 2017 |x 1402-4896 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838726/files/Eksaeva_2017_Phys._Scr._2017_014051.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:838726 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)7884 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130070 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130122 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130142 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)169120 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130166 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)6784 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)2620 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)165905 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)129976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)162160 |
913 | 1 | _ | |a DE-HGF |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |2 G:(DE-HGF)POF3-100 |v Plasma-Wall-Interaction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|