000838779 001__ 838779
000838779 005__ 20230217105511.0
000838779 0247_ $$2Handle$$a2128/16133
000838779 0247_ $$2ISSN$$a1866-1777
000838779 020__ $$a978-3-95806-261-0
000838779 037__ $$aFZJ-2017-07303
000838779 041__ $$aEnglish
000838779 1001_ $$0P:(DE-Juel1)159348$$aKim, Wonjoo$$b0$$eCorresponding author$$ufzj
000838779 245__ $$aInvestigation of switching mechanism in Ta$_{2}$O$_{5}$-based ReRAM devices$$f- 2017-12-06
000838779 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000838779 300__ $$aII, III, II, 138 S.
000838779 3367_ $$2DataCite$$aOutput Types/Dissertation
000838779 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000838779 3367_ $$2ORCID$$aDISSERTATION
000838779 3367_ $$2BibTeX$$aPHDTHESIS
000838779 3367_ $$02$$2EndNote$$aThesis
000838779 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1512546354_21213
000838779 3367_ $$2DRIVER$$adoctoralThesis
000838779 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Information / Information$$v50
000838779 502__ $$aRWTH Aachen, Diss., 2017$$bDissertation$$cRWTH Aachen$$d2017
000838779 520__ $$aRedox-based Restive Random Access Memory (ReRAM) has recently receivedstrong attention due to its potential payout toward high density, low-cost,low-energy NVMs. Development and understanding of Ta$_{2}$O$_{5}$ based ReRAM devices in this research work have been made under following experiments, (i)Ta$_{2}$O$_{5}$ switching layer, (ii) ohmic electrode, (iii) Forming-free ReRAM devices, (iv)ReRAM and MOSFET integration, and (v) implementation of modular arithmetic function. In order to optimize the Ta$_{2}$O$_{5}$ switching layer, various approaches such as the effects of RF sputtering power in Ta$_{2}$O$_{5}$ deposition, the thickness effect of Ta$_{2}$O$_{5}$ switching layer, and the Bi-layer (Ta$_{2}$O$_{5}$ /TaO$_{x}$) structure have been made. The optimized 7 nm-thick Ta$_{2}$O$_{5}$ ReRAM device shows lower VFORM (1.8 V), reasonable V$_{S}$ET (0.8 V) with large memory window (R$_{OFF}$ /R$_{ON}$ >300 at V$_{RESET−STOP}$ =-2.0 V), stable endurance up to 106 cycles (@1.0 μs) and goodretention at 125 $^{\circ}$C for 10$^{4}$ seconds. Further, defect density in the switching oxide can also affect the switching properties of ReRAM devices and a modulation of defect density is possible by deposition rate variation. The layer deposition rate changes depending on RF sputtering power of Ta$_{2}$O$_{5}$ layer. The best RF power condition (236W) at given layer thickness (7 nm) was found in terms of memory window (R$_{OFF}$ /R$_{ON}$ > 800 at V$_{RESET−STOP}$ = -2.2 V) with high reliability (retention and endurance) performance. By introducing optimal Bi-layer (Ta$_{2}$O$_{5}$ /TaO$_{x}$) stack in Ta$_{2}$O$_{5}$ ReRAM device, the R$_{OFF}$ performance further improves with 7.0 nm-thick Ta$_{2}$O$_{5}$ / 20 nm-thick TaO$_{x}$ at low I$_{CC}$ level (50 μA) due to a better control of defects in the Ta$_{2}$O$_{5}$ switching layer. However, the V$_{FORM}$ of the Bi-layer increases from 1.8 V to 3.8 V in spite of highly conductive nature of TaO$_{x}$ layer. [...]
000838779 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000838779 8564_ $$uhttps://juser.fz-juelich.de/record/838779/files/Information_50.pdf$$yOpenAccess
000838779 8564_ $$uhttps://juser.fz-juelich.de/record/838779/files/Information_50.gif?subformat=icon$$xicon$$yOpenAccess
000838779 8564_ $$uhttps://juser.fz-juelich.de/record/838779/files/Information_50.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838779 8564_ $$uhttps://juser.fz-juelich.de/record/838779/files/Information_50.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838779 8564_ $$uhttps://juser.fz-juelich.de/record/838779/files/Information_50.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838779 8564_ $$uhttps://juser.fz-juelich.de/record/838779/files/Information_50.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838779 909CO $$ooai:juser.fz-juelich.de:838779$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000838779 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838779 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838779 9141_ $$y2017
000838779 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159348$$aForschungszentrum Jülich$$b0$$kFZJ
000838779 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000838779 920__ $$lyes
000838779 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000838779 980__ $$aphd
000838779 980__ $$aVDB
000838779 980__ $$aUNRESTRICTED
000838779 980__ $$abook
000838779 980__ $$aI:(DE-Juel1)PGI-7-20110106
000838779 9801_ $$aFullTexts