Home > Publications database > Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers > print |
001 | 838818 | ||
005 | 20210129231638.0 | ||
024 | 7 | _ | |a 10.3390/nano7110370 |2 doi |
024 | 7 | _ | |a 2128/15785 |2 Handle |
024 | 7 | _ | |a WOS:000416783800025 |2 WOS |
024 | 7 | _ | |a altmetric:28460920 |2 altmetric |
024 | 7 | _ | |a pmid:29113050 |2 pmid |
037 | _ | _ | |a FZJ-2017-07330 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Schmidt, Dirk |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers |
260 | _ | _ | |a Basel |c 2017 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1510063563_4903 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Resistively switching devices are promising candidates for the next generation of non-volatile data memories. Such devices are up to now fabricated mainly by means of top-down approaches that apply thin films sandwiched between electrodes. Recent works have demonstrated that resistive switching (RS) is also feasible on chemically synthesized nanoparticles (NPs) in the 50 nm range. Following this concept, we developed this approach further to the sub-10 nm range. In this work, we report RS of sub-10 nm TiO2 NPs that were self-assembled into monolayers and transferred onto metallic substrates. We electrically characterized these monolayers in regard to their RS properties by means of a nanorobotics system in a scanning electron microscope, and found features typical of bipolar resistive switching |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Raab, Nicolas |0 P:(DE-Juel1)157925 |b 1 |
700 | 1 | _ | |a Noyong, Michael |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Santhanam, Venugopal |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 4 |
700 | 1 | _ | |a Simon, Ulrich |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.3390/nano7110370 |g Vol. 7, no. 11, p. 370 - |0 PERI:(DE-600)2662255-5 |n 11 |p 370 |t Nanomaterials |v 7 |y 2017 |x 2079-4991 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838818/files/nanomaterials-07-00370.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838818/files/nanomaterials-07-00370.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838818/files/nanomaterials-07-00370.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838818/files/nanomaterials-07-00370.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838818/files/nanomaterials-07-00370.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838818/files/nanomaterials-07-00370.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:838818 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOMATERIALS-BASEL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|