001     838844
005     20210129231642.0
024 7 _ |a 10.1016/j.advwatres.2017.06.006
|2 doi
024 7 _ |a 0177-3569
|2 ISSN
024 7 _ |a 0309-1708
|2 ISSN
024 7 _ |a 0341-194X
|2 ISSN
024 7 _ |a 0341-194x
|2 ISSN
024 7 _ |a 0341-1958
|2 ISSN
024 7 _ |a 1872-9657
|2 ISSN
024 7 _ |a 2128/15836
|2 Handle
024 7 _ |a WOS:000410674200013
|2 WOS
037 _ _ |a FZJ-2017-07354
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Baatz, D.
|0 P:(DE-Juel1)157759
|b 0
|e Corresponding author
245 _ _ |a Catchment tomography - An approach for spatial parameter estimation
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510312457_27057
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of distributed-physically based hydrological models is often hampered by the lack of information on key parameters and their spatial distribution and temporal dynamics. Typically, the estimation of parameter values is impeded by the lack of sufficient observations leading to mathematically underdetermined estimation problems and thus non-uniqueness. Catchment tomography (CT) presents a method to estimate spatially distributed model parameters by resolving the integrated signal of stream runoff in response to precipitation. Basically CT exploits the information content generated by a distributed precipitation signal both in time and space. In a moving transmitter-receiver concept, high resolution, radar based precipitation data are applied with a distributed surface runoff model. Synthetic stream water level observations, serving as receivers, are assimilated with an Ensemble Kalman Filter. With a joint state-parameter update the spatially distributed Manning's roughness coefficient, n, is estimated using the coupled Terrestrial Systems Modelling Platform and the Parallel Data Assimilation Framework (TerrSysMP-PDAF). The sequential data assimilation in combination with the distributed precipitation continuously integrates new information into the model, thus, increasingly constraining the parameter space. With this large amount of data included for the parameter estimation, CT reduces the problem of underdetermined model parameters. The initially biased Manning's coefficients spatially distributed in two and four fixed parameter zones are estimated with errors of less than 3% and 17%, respectively, with only 64 model realizations. It is shown that the distributed precipitation is of major importance for this approach.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
700 1 _ |a Kurtz, W.
|0 P:(DE-Juel1)140349
|b 1
700 1 _ |a Hendricks Franssen, H. J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 3
700 1 _ |a Kollet, S. J.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.advwatres.2017.06.006
|g Vol. 107, p. 147 - 159
|0 PERI:(DE-600)2023320-6
|p 147 - 159
|t Advances in water resources
|v 107
|y 2017
|x 0309-1708
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838844/files/1-s2.0-S0309170816302019-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838844/files/1-s2.0-S0309170816302019-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838844/files/1-s2.0-S0309170816302019-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838844/files/1-s2.0-S0309170816302019-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838844/files/1-s2.0-S0309170816302019-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838844/files/1-s2.0-S0309170816302019-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838844
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157759
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140349
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV WATER RESOUR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21