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a b s t r a c t 

The use of distributed-physically based hydrological models is often hampered by the lack of informa- 

tion on key parameters and their spatial distribution and temporal dynamics. Typically, the estimation of 

parameter values is impeded by the lack of sufficient observations leading to mathematically underde- 

termined estimation problems and thus non-uniqueness. Catchment tomography (CT) presents a method 

to estimate spatially distributed model parameters by resolving the integrated signal of stream runoff

in response to precipitation. Basically CT exploits the information content generated by a distributed 

precipitation signal both in time and space. In a moving transmitter-receiver concept, high resolution, 

radar based precipitation data are applied with a distributed surface runoff model. Synthetic stream wa- 

ter level observations, serving as receivers, are assimilated with an Ensemble Kalman Filter. With a joint 

state-parameter update the spatially distributed Manning’s roughness coefficient, n , is estimated using the 

coupled Terrestrial Systems Modelling Platform and the Parallel Data Assimilation Framework (TerrSysMP- 

PDAF). The sequential data assimilation in combination with the distributed precipitation continuously in- 

tegrates new information into the model, thus, increasingly constraining the parameter space. With this 

large amount of data included for the parameter estimation, CT reduces the problem of underdetermined 

model parameters. The initially biased Manning’s coefficients spatially distributed in two and four fixed 

parameter zones are estimated with errors of less than 3% and 17%, respectively, with only 64 model 

realizations. It is shown that the distributed precipitation is of major importance for this approach. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Hydrological models support decision making for hydropower 

generation and water resources management, such as irrigation 

scheduling and drinking water supply ( Paiva et al., 2013 ). They are 

powerful tools for predicting extreme events and designing flood 

control measures ( Pauwels and De Lannoy, 2009; Shi et al., 2014 ). 

Uncertainties in model structure, forcings and parameters are still 

challenging issues limiting the forecast reliability ( Reichle, 2008; 

Liu et al., 2012; Rakovec et al., 2012; McMillan et al., 2013; Shi 

et al., 2014 ). Sophisticated, distributed hydrological models have 

been developed in the last decades. The number of uncertain 

model parameters is large for these models ( Pokhrel and Gupta, 

2011; Shi et al., 2014 ), which makes parameter estimation a dif- 

ficult task. The number of unknown parameters is usually larger 

than the number of observations ( Yeh, 1986; Bourdin et al., 2012 ), 
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resulting in an underdetermined parameter identification problem 

i.e. several different parameter sets may result in the same model 

accuracy, which is referred to as non-uniqueness. 

For the calibration of hydrological models, stream water level 

or discharge are often the main variables to be conditioned on. 

For flood forecasting, which is, besides the research on hydrolog- 

ical processes, one of the main purposes of hydrological models 

( Moradkhani et al., 2005 ), discharge is one of the most important 

output variables. Discharge is influenced by practically all model 

states and parameters. As response to precipitation, surface runoff

and stream discharge are formed along different paths and time 

scales, depending on the precipitation pattern and upstream pa- 

rameters. Therefore, discharge constitutes an integrated response 

signal comprising information on e.g. upstream parameters, topog- 

raphy, system states, and precipitation. 

This study presents a catchment tomography (CT) approach 

for resolving the aforementioned integrated response signals with 

data assimilation techniques. Conceptually, precipitation, which is 

highly variable in time and space, serves as moving transmitter; 

and several stream gauges, measuring the generated streamflow 

http://dx.doi.org/10.1016/j.advwatres.2017.06.006 
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at different locations within the catchment, serve as receivers. In 

the CT, stream water level observations are assimilated into a dis- 

tributed hydrological model, which is forced with high resolu- 

tion, radar based precipitation data. In a joint state-parameter up- 

date with the Ensemble Kalman Filter (EnKF), spatially distributed 

flow parameters are updated together with the stream water level. 

The sequential assimilation of stream water level continuously in- 

tegrates new information into the hydrological model with ev- 

ery precipitation event. This large amount of information used for 

parameter estimation permits the mitigation of non-uniqueness 

problems. Section 2 gives a review on data assimilation methods 

and an explanation of the proposed catchment tomography ap- 

proach. The experimental set-up, the sample catchment, the model 

and the data assimilation framework are introduced in Section 3 . 

Section 4 presents the results of the different experiments and 

conclusions are drawn in the final Section 5 . 

2. Theory and background 

2.1. Data assimilation 

In recent years, an increasing amount of data has been made 

available in the geosciences via the analysis of subsurface, land sur- 

face and atmospheric processes, due to an enhanced application of 

remote sensing and in-situ measurement techniques ( McLaughlin, 

20 02; Reichle, 20 08; Montzka et al., 2012 ). These data enable the 

application of advanced, data-intensive methods and may lead to 

new approaches of data assimilation mitigating the problems of 

underdetermined models and associated large uncertainties of es- 

timated states and parameters. Data assimilation comprises sev- 

eral techniques for merging multisource data, downscaling, reduc- 

tion of data volumes and inter- or extrapolation of distributed 

data ( Reichle, 2008 ). The aim of data assimilation is to reduce un- 

certainty by combining data of different sources. Often, observa- 

tional data are integrated into models to gain a new estimate with 

lower uncertainty than both the observation and the model result 

alone ( Reichle, 2008 ). Variational data assimilation methods opti- 

mize model states on the basis of complete time series of observa- 

tions, by assimilating measurement data in batch while sequential 

data assimilation continuously integrates newly available data in 

a sequential fashion (Liu and Gupta, 20 07; Reichle, 20 08; Rakovec 

et al., 2015 ). 

The Kalman Filter ( Kalman, 1960 ) and its extensions are se- 

quential methods which are widely used ( Evensen, 1994; Burgers 

et al., 1998; Reichle et al., 2002b ). The model forecast of a state or 

a parameter value is updated with observations using the Kalman 

gain, a weighting factor relating model and measurement uncer- 

tainties. The traditional Kalman Filter assumes the model system 

to be linear and the probability density distribution of the states to 

be Gaussian ( Kalman, 1960; McLaughlin, 2002; Reichle, 2008 ). This 

assumption is unrealistic for most hydrologic applications. The Ex- 

tended Kalman Filter linearizes the estimation of the model covari- 

ances, which often results in an unbounded growth of the error co- 

variance and involves high computation costs ( McLaughlin, 2002 ). 

The Ensemble Kalman Filter (EnKF) ( Evensen, 1994; Burgers et al., 

1998 ) is more robust under conditions of non-linearity and non- 

Gaussianity and is a commonly applied alternative. The model er- 

ror covariance needed for the update step is estimated from an 

ensemble of possible model states and does therefore not need to 

be propagated forward in time explicitly. That reduces the com- 

putational burden and does not assume a Gaussian distribution of 

model states. Nevertheless, the performance of EnKF is only opti- 

mal if uncertain states (and parameters) are Gaussian. 

The EnKF is a stochastic filter because observations are per- 

turbed to avoid an underestimation of the analysis error covari- 

ance ( Burgers et al., 1998 ). Whitaker and Hamill (2002) argue that 

the random perturbation adds additional sampling error, especially 

for small ensembles and thus propose a deterministic Ensemble 

Square Root Filter which does not need perturbed observations. 

Further deterministic approaches for Ensemble Kalman Filters are 

proposed by Anderson (20 01) and Bishop et al., (20 01) and re- 

viewed by Tippett et al. (2003) . 

A fundamental problem of approximating the error covari- 

ance by an ensemble of simulations is the limited ensemble 

size, which for several reasons leads to a systematic underesti- 

mation of the ensemble variance. In turn, the underestimation 

of model variance results in assigning too large weights to the 

model and too small weights to the measurements, and can ul- 

timately result in small weights for the measurements such that 

the model simulation results experience no improvement by the 

incorporation of the data. This is also called filter divergence 

( van Leeuwen, 1999; Ehrendorfer, 2007; Franssen and Kinzelbach, 

2008 ). Houtekamer and Mitchell (1998) saw a main reason for 

the decreasing ensemble spread in an inbreeding of the ensemble: 

the background error statistics needed for determining the Kalman 

gain are calculated from the same ensemble which is then up- 

dated. For this reason, an underestimation in ensemble error co- 

variance is sometimes referred to as filter inbreeding in literature. 

van Leeuwen (1999) pointed out that the inbreeding is only part of 

the problem. The approximated forecast error covariance includes 

inaccuracies, because of sampling errors, especially for small en- 

semble sizes. Due to nonlinearities in the update step these inaccu- 

racies lead to an underestimation of the analysis error covariance. 

Observations are not always available at regular time inter- 

vals or at times the model is updated. Therefore, methods were 

developed to allow for assimilating observations made between 

the last updating time step and the current time step. This is 

generally referred to as asynchronous or four dimensional varia- 

tional data assimilation ( Sakov et al., 2010; Rakovec et al., 2015 ). 

A common example is the Ensemble Smoother ( Evensen and van 

Leeuwen, 20 0 0 ) which considers observations made within a spec- 

ified time interval. 

2.1.1. Data assimilation in hydrology 

Early work on data assimilation in hydrology was in the 1980 ́s 

( Kitanidis and Bras, 1980b; Kitanidis and Bras, 1980a ) with the 

extended Kalman Filter and it was shown in these works that 

streamflow forecasts could be improved by integrating real-time 

observations of uncertain precipitation and discharge observa- 

tions into a conceptual hydrological model. Sequential data as- 

similation was not applied very frequently in the 1980 s and 

1990 s, related most probably to the earlier indicated limita- 

tions of the classical and extended Kalman filter. Data assim- 

ilation has increasingly been applied in the area of water re- 

sources in the past two decades ( Clark et al., 2008; Reichle, 

2008; Rakovec et al., 2012; Reichle et al., 2002a ). A compre- 

hensive review on data assimilation in terrestrial systems is 

given by Montzka et al. (2012) . Madsen et al. (2003) assimi- 

lated stream water levels into a distributed hydrological model. 

They showed improvements in the model forecast by assimilat- 

ing water levels and fluxes into MIKE 11. Pauwels and De Lan- 

noy (2006) performed synthetic experiments with a retrospec- 

tive EnKF and mitigated the effect of a bias in the model’s 

initial conditions by assimilating discharge. Furthermore they 

showed that a bias in soil moisture resulting from strongly bi- 

ased precipitation input can be reduced by assimilating discharge. 

Clark et al. (2008) updated hourly distributed model states (soil 

moisture, aquifer storage and surface storage) by assimilating four 

streamflow observations with the EnKF or Ensemble Square Root 

Filter. McMillan et al. (2013) updated the same states but consid- 

ered the time lag between downstream gauging information and 

upstream model states by applying a recursive ensemble Kalman 
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Filter on their operational system. Rakovec et al. (2012) examined 

different experimental designs in synthetic and real-world stud- 

ies and showed that the number of observation locations has a 

more significant impact on the data assimilation than a frequent 

update. This confirmed findings by Clark et al. (2008) that dis- 

tributed observations are essential for updating distributed states. 

Camporese et al. (2009b) and Bailey and Bau (2012) both as- 

similated pressure head and streamflow in the surface-subsurface 

flow model CATHY. Their synthetic experiments on an idealized 

v-catchment showed that the assimilation of the pressure head 

is much more successful in improving streamflow and pressure 

head estimations than the streamflow assimilation. The same was 

shown by Camporese et al. (2009a) for a distributed catchment 

model. The experiments by Camporese et al. (2009b) even showed 

that the assimilation of streamflow alone had a negative im- 

pact on the simulated subsurface states compared to open loop 

simulations. The reason for this might be that, for both studies 

Camporese et al. (2009a) and Camporese et al. (2009b) assimilated 

stream flow at only one single observation location at the catch- 

ment outlet. 

2.1.2. Parameter estimation with data assimilation 

While data assimilation is usually applied for optimizing model 

states, it can also be used for estimating or improving model pa- 

rameters ( Annan et al., 2005; Franssen and Kinzelbach, 2008 ). Us- 

ing data assimilation techniques for parameter estimation offers, 

in contrast to the usual batch calibration, the advantage of ac- 

counting for parameter uncertainty and time-variant parameters 

( Moradkhani et al., 2005 ). Furthermore, the model parameteriza- 

tion is continuously improved and not limited to past observations. 

Moradkhani et al. (2005) presented a method for combining state 

and parameter estimation by a dual EnKF. Vrugt et al. (2005) si- 

multaneously performed data assimilation and parameter esti- 

mation by combining the state update with an external pa- 

rameter optimization. This approach was successfully applied by 

Vrugt et al. (2006) for operational stream flow forecasting. A com- 

mon technique for a joint state-parameter estimation is the aug- 

mentation of the state vector with the parameters to be updated 

( Chen and Zhang, 2006; Franssen and Kinzelbach, 2008; Kurtz 

et al., 2012 ). The covariances between the unknown parameters 

and the model states at observation locations are included into the 

state covariance matrices, yielding an augmented state-parameter 

covariance matrix. 

Parameter estimation for hydrological and hydraulic models 

by data assimilation techniques has been investigated in several 

studies. Moradkhani et al. (2005) updated five model parame- 

ters in a conceptual model together with streamflow using a 

dual state-parameter estimation approach. Franssen and Kinzel- 

bach (2008) made a comprehensive study on the impact of en- 

semble size, number of observations and observation frequency 

for synthetic data assimilation with different variants of the EnKF 

and with and without joint parameter estimation. They found that 

joint state-parameter estimation significantly increases filter in- 

breeding. This could be mitigated by introducing a damping fac- 

tor, which diminishes the update. Kurtz et al. (2012) assimilated 

hydraulic head data for a stream-aquifer flow problem and jointly 

estimated time variant riverbed hydraulic conductivities. By ap- 

plying covariance inflation, a more efficient parameter estimation 

was achieved. Ground water head and stream discharge obser- 

vations were assimilated with and without parameter update by 

Rasmussen et al. (2015) . The authors showed that a large ensemble 

size or localization methods are beneficial for parameter updates 

in a coupled surface - subsurface model. ( Pathiraja et al., 2016 ) up- 

dated time variant parameters after deforestation events with a lo- 

cally linear EnKF and thereby improved stream flow predictions. 

2.2. Catchment tomography 

Tomography maps an object’s physical properties by inverting 

a signal that has been transmitted through many different cross 

sections. This imaging technique is already applied in groundwater 

hydrology for determining aquifer properties by series of pumping 

tests, called hydraulic tomography. By measuring changes in hy- 

draulic head in response to various pumping tests performed at 

different wells, spatially distributed information on the aquifer re- 

sponse is gained and inverted to estimate the hydraulic properties 

of interest ( Yeh and Liu, 20 0 0; Li et al., 2007 ). 

With the aim of distributed parameter estimation, this study 

applies the tomographic concept on a hydrological catchment. In- 

stead of pumping water, the natural precipitation, which is moni- 

tored in high resolution by radars, is used as a transmitter. Stream 

gauges are the receivers measuring water levels as the catchment 

responds to precipitation water input and upstream flow param- 

eters. These measurements are inverted for estimating distributed 

model hydraulic parameters. 

The inversion is done by joint state-parameter estimation with 

the EnKF using the state-augmentation approach. Stream water 

level observations at multiple locations are assimilated into the 

distributed model. The data assimilation allows for accounting for 

the changing uncertainty of model parameters and model forc- 

ings during the inversion process. A further advantage of using 

this data assimilation method instead of classical calibration is the 

sequential and efficient integration of newly available information 

into the model. This way a large amount of data can be processed 

and utilized for the parameter estimation, which reduces the non- 

uniqueness problem of parameter estimation. Note that, parame- 

ter uncertainty in an inverse framework is controlled by uncertain 

model input and model structural errors. This uncertainty will re- 

main in any case, thus, there cannot be a unique solution to the 

parameter identification problem. 

Every precipitation event initiates a new, different hydrological 

response of the catchment. If there is rain in only a small part of 

the study area, the resulting streamflow is especially meaningful 

for this region. Therefore the application of distributed and accu- 

rate precipitation forcing on the hydrological model is a key driver 

for this parameter estimation method. Temporal and spatial res- 

olution need to be high enough to enable the model to simulate 

spatially distributed runoff generation at relevant hydrological time 

scales. The temporal variability of precipitation leads to changes in 

stream water level with time. This fluctuating stream water level 

as response to temporally variable precipitation is the essential sig- 

nal to invert for the temporally constant model parameters. 

In this study, the proposed approach was assessed by estimat- 

ing the Manning’s roughness coefficient, n . For a synthetic surface 

runoff model with real precipitation input several experimental set 

ups are evaluated. Because the model does not consider subsur- 

face flow, simulated streamflow is sensitive to the Manning’s coef- 

ficient. 

While several studies have assimilated stream water level into 

hydrological models to update states and, in many cases, also 

model parameters, catchment tomography presents an approach 

that combines high frequency stream water level assimilation with 

high resolution precipitation data based on rain radar transmit- 

ter information. We hypothesize that the large amount of data 

which is continuously and efficiently integrated into the model 

by sequential data assimilation permits the mitigation of the non- 

uniqueness problem in distributed hydraulic parameter estimation. 

3. Methodology 

Synthetic experiments were performed using the hydro- 

logic component of the Terrestrial Systems Modeling Platform 
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(TerrSysMP, Shresta et al., 2014 ;) with integrated parallel data as- 

similation technology (TerrSysMP-PDAF; Kurtz et al., 2016 ) to verify 

catchment tomography for parameter estimation and to test the ef- 

ficiency of the approach under different experimental set-ups. For 

testing purposes, synthetic models are of advantage, because struc- 

tural model and systematic measurement errors are known, which 

allows for investigating the suitability of the methodology in prin- 

ciple. Furthermore, synthetic experiments are a useful technique to 

examine possible experimental designs ( Pokhrel and Gupta, 2011 ) 

and identify potential obstacles. 

We simulated surface runoff in a two-dimensional domain of 

varying topography and by excluding subsurface and atmospheric 

processes. The modelling domain has horizontal dimensions of 

72 ×72 rectangular grid cells of size 500 ×500 m and one vertical 

layer. The surface permeability is set to zero to simulate surface 

runoff only. Precipitation is introduced as upper boundary condi- 

tion. In this 2D set-up, the surface runoff was influenced solely 

by the friction slope S f (-) and Manning’s roughness coefficient n 

(TL −1/3 ) based on the Manning’s Eq. (1) . The relationship is de- 

scribed by the Manning’s equation ( Chow et al., 1988; Kollet and 

Maxwell, 2006 ) 

v = 

√ 
s f 

n 
ψ 

2 
3 
s (1) 

with v being the flow velocity (LT −1 ), and ψ s the surface ponding 

depth (L). 

At the horizontal boundaries there is no inflow but only out- 

flow q out out of the modelling domain with a gradient boundary 

condition specified in Eq. 2 : 

q out = 

√ 
s f , outlet 
n outlet 

ψ 
3 
5 
s, outlet 

(2) 

The slope was derived from a digital elevation model and n was 

the only parameter to be estimated. The Manning‘s coefficient n 

is an empirical parameter describing the roughness of a surface, 

which influences the flow velocity. 

Because there is no subsurface in this simplified scenario, rivers 

would dry out in periods without precipitation due to the ab- 

sence of base flow. In order to avoid this, an average runoff was 

simulated by including an additional steady state background flux 

equalling an average baseflow rate of 500 mm per year. This was 

integrated in the model as the top boundary condition and was 

constant in time and space. 

This background flux was also used for forcing the spin-ups, 

which were performed without distributed precipitation. Spin-ups 

started with an initial water level of zero and were run until steady 

state was achieved. To account for all possible transient scenarios 

the spin-ups lasted 10 days (2880 time steps). The time of concen- 

tration of the model is relatively short due to nonexistence of sub- 

surface storage. The steady state water level fields resulting from 

the spin-up served as initial conditions for the simulations. 

3.1. The ensemble Kalman filter for joint state and parameter 

estimation 

The Manning’s coefficient n was updated by assimilating wa- 

ter level observations with a joint state-parameter update with 

the EnKF with a state-augmentation approach. The state vector of 

the ensemble Kalman filter is therefore augmented by a parameter 

vector. Thus, parameters are updated jointly by state observations 

only, via the covariances between the parameter ensemble and the 

ensemble of state forecasts at the observation locations. For the 

parameter update, the Manning’s n was log 10 -transformed. Please 

refer to the Appendix for a detailed explanation of the filter in- 

cluding equations. 

Both water level and n were updated hourly with an ensem- 

ble of 64 members. A more frequent update is theoretically pos- 

sible, because stream water level observations are available at ev- 

ery model time step. However, the impact of spurious correlations 

on state and parameter updating is enhanced by frequent updat- 

ing, especially if parameters are updated simultaneously. Prelimi- 

nary experiments showed that an updating interval of one hour is 

a good trade-off for not missing significant peak flows induced by 

the applied precipitation time series. 

3.2. TerrSysMP – PDAF 

The Terrestrial Systems Modelling Platform (TerrSysMP) 

( Shrestha et al., 2014 ), a coupled biogeophysical earth system 

model, is used in this study. TerrSysMP consists of the numerical 

weather prediction model COSMO-DE ( Baldauf et al., 2011 ), which 

is the operational model of the German Weather Service, the 

NCAR Community Land Model 3.5 (CLM) ( Oleson et al., 2008 ) 

and the hydrologic surface and subsurface flow model ParFlow 

( Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and 

Maxwell, 2006 ). These three independently developed component 

models are coupled via the external Ocean Atmosphere Sea Ice Soil 

coupler (OASIS3) ( Valcke, 2013 ). In addition to running the fully 

coupled system, it is possible to run any of the three component 

models independently within TerrSysMP. 

In this study, ParFlow is applied stand-alone based on the mod- 

ular approach of TerrSysMP. ParFlow is a 3D variably-saturated 

subsurface and overland flow model. It is based on the 3D 

Richards equation and able to simulate heterogeneous param- 

eter distributions with high resolution ( Maxwell et al., 2010 ). 

ParFlow shows excellent parallel efficiency and therefore allows 

for high-resolution large-scale hydrologic simulations as shown by 

Kollet et al. (2010) and Maxwell et al. (2015) . 

An overland flow boundary condition simulator allows sim- 

ulation of surface flow based on the shallow water equation 

( Kollet and Maxwell, 2006 ). The continuity equation for shallow 

overland flow in two dimensions is given by 

δψ s 

δt 
= ∇ × (v ψ s ) + q r (x ) (3) 

with ψs being the surface ponding depth [L], t the time [T], v the 

vertically averaged flow velocity [L/T], q r ( x ) the rainfall rate. The 

relationship between flow depth and discharge is given by Man- 

ning’s Eq. (1) . 

The overland flow model is solved with a Newton-Krylov 

method ( Jones and Woodward, 2001; Kollet and Maxwell, 2006 ) 

and discretized spatially by a standard upwind finite control vol- 

ume scheme and temporally by an implicit backward Euler scheme 

( Kollet and Maxwell, 2006 ). Eq. 3 is integrated into the Richards 

equation as a free surface overland flow boundary condition. In 

this work, only overland flow is simulated in a single vertical layer 

by setting the permeability and therefore the exchange with the 

subsurface to zero. 

TerrSysMP has recently been coupled to the Parallel Data As- 

similation Framework (PDAF) ( Nerger et al., 2005; Nerger and 

Hiller, 2013 ) by Kurtz et al., (2016) . PDAF is a parallelized data as- 

similation system, which can be combined with a numerical model 

to allow for efficient ensemble data assimilation. PDAF parallelizes 

not only the forward ensemble simulations but also the analysis 

step to provide a fully parallelized framework for data assimila- 

tion. A large number of different filter methods are available for 

this purpose. 

Kurtz et al. (2016) implemented a joint state-parameter up- 

date with TerrSysMP-PDAF to estimate spatially distributed fields 

of the Manning’s roughness parameter or saturated hydraulic con- 

ductivities. An important feature is the exchange of the relevant 
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Fig. 1. Time series of spatial mean precipitation (left) and spatially distributed temporal mean precipitation (right) for the study period. The Upper Erft – Swist Catchment 

is marked in the model domain. 

states and fluxes between the ensemble and filter in memory. 

Thus, no IO is required, which affords the application of the sys- 

tem to very large problem sizes. For details on the implementation 

of TerrSysMP-PDAF the reader is referred to Kurtz et al. (2016) . 

3.3. Synthetic 2D experiments 

3.3.1. Sample catchment and data 

As aforementioned, the catchment tomography approach was 

applied to a synthetic catchment mimicking the Swist and Upper 

Erft catchments in Western Germany discharging into the Rhine 

River. The catchment was selected, because of the availability of 

high resolution radar precipitation data, several stream gauges 

within the catchment and its proneness to flooding due to local 

convective precipitation events. Topography and distributed pre- 

cipitation were obtained from real data. For the synthetic exper- 

iments, synthetic stream gauge water level observations modelled 

in the reference run at the locations of real stream gauges were 

used. 

The Swist and Upper Erft catchments are located in the Eifel 

Mountains southwest of Bonn (Germany) between 50.45 °N and 

50.80 °N and 6.56 °E and 7.11 °E. The catchment area is about 

530km ² and elevation ranges from 72 to 573 m.a.s.l. The rectan- 

gular domain spanning the watershed is 36 ×36 km wide with a 

spatial resolution of 500 m. The resulting model domain of 72 ×72 

cells is convenient to parallelize using regular domain decompo- 

sition. Within the area there are a few small towns and villages, 

many of them situated nearby rivers and channels. 

3.3.2. Precipitation from rain radar 

The model was forced with high resolution radar precipita- 

tion data from the polarimetric X-Band Doppler radar BoXPol of 

the Meteorological Institute, Bonn University (Germany). More de- 

tails on the radar can be found in Diederich et al. (2015a) and 

Diederich et al. (2015b) . The rain rate was estimated from radar re- 

flectivity for rain rates larger than 8 mm/h and from specific phase 

shift for rain rates smaller than 8 mm/h. The spatial and temporal 

resolution of the precipitation fields are 500 m and 5 minutes, re- 

spectively. In the experiments presented here, a 30-day time series 

of June 2011 was applied. Fig. 1 shows the spatial and temporal 

mean precipitation for the study period and area. The spatial aver- 

age total precipitation for the 30 days is 87.81 mm. The high res- 

olution precipitation forcing is expected to be the main driver of 

the proposed parameter estimation system. 

Experiments were first performed with error-free precipitation. 

Identical precipitation fields, as estimated from the rain radar, were 

applied to the reference simulation and all realizations. The same 

experiments were then performed with an ensemble of perturbed 

precipitation data to account for radar error. To generate the en- 

semble, precipitation was perturbed by a multiplicative, spatially 

and temporally correlated error. It was assumed that the correla- 

tion length of the precipitation error is similar to the correlation 

length of the precipitation itself. From precipitation data we esti- 

mated a temporal correlation length of 1 h and a spatial correlation 

length of 8 km. For avoiding negative error values the multiplica- 

tive error was chosen to be lognormally distributed with a mean of 

1 and a standard deviation of 0.5. To generated this data, first 3D 

correlated, normally distributed data fields with mean 0.1115718 

and standard deviation 0.4723807 were generated with a geosta- 

tistical simulation program from the geostatistical software pack- 

age gstat (R) ( Pebesma, 2004; R Development Core Team, 2008 ). 

These fields were then transformed to lognormally distributed er- 

ror fields which by the transformation got the desired mean of 1 

and standard deviation of 0.5. 

3.3.3. Stream water level observation locations and observation error 

There are 15 real-world stream gauges in the model domain 

comprising the Upper Erft and Swist catchments that are oper- 

ated by LANUV NRW (State Department for the Environment, Na- 

ture and Consumerism of North Rhine-Westphalia) and the Erft- 

Verband (Erft Natural Resources District). The latter supplied the 

geographical information of the different gauges. Nine stream 

gauges are located in the Erft river and its tributaries, two in the 

Swist river and four in the Rotbach. The Rotbach is actually not 

part of the Upper-Erft and Swist catchments, as it discharges into 

the Lower-Erft just north of the study area, but the four gauges are 

located in the computational model domain and are therefore in- 

cluded in the experiments. For the synthetic studies, the locations 

of the 15 gauges were used as synthetic observation points. The 

locations of stream gauges ( Fig. 2 ) were assigned to the equivalent 

grid cells in the model. Due to the resolution of 500 m and the in- 

volved approximations, the locations of some of the gauges needed 

to be corrected to be located in the river grid cells. Streams are 

not explicitly modeled in ParFlow but are formed by runoff gen- 

eration. Thus, the spatial scale of water levels is 500 m which is 

larger than most rivers. If real instead of synthetic stream water 

level or discharge measurements are assimilated, a measurement 

operator needs to be applied to consider the scale mismatch be- 

tween measurement and model. 

The discharge measurement error is usually a function of the 

flow rate ( Di Baldassarre and Montanari, 2009 ) and may differ con- 
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Fig. 2. Locations of stream water gauges and the four n parameter zones of the study domain (left). The urban, field and forest zones are comprised in the zone hillslopes 

for the scenarios with only two zones of n . (right) Google Earth Landsat image to derive land use based zonation. 

siderably between different gauges (Tilo Keller, Erftverband, Ger- 

many, personal communication, April 24th 2015). 

Observations were perturbed with a random error drawn from 

a normal distribution with zero mean. Two different implementa- 

tions for the standard deviation of the error were tested: An abso- 

lute observation error with a standard deviation constant in time 

and space, and a relative observation error depending on the wa- 

ter level. The absolute error was drawn from a distribution with a 

standard deviation equal to 30% of the mean water level at all ob- 

servation points at steady state, with the constant background flux 

but without distributed precipitation. The relative observation er- 

ror in contrast has a standard deviation of 50% of the synthetically 

observed water level at the specific stream gauges and observation 

times. For the case of an absolute observation error, the relative er- 

rors of the individual stream gauges differed considerably and are 

smaller for peak than for low flow conditions. Thus, by applying 

an absolute observation error, headwater gauges generally have a 

larger observation error than by applying a relative error, because 

the water level is lower in upstream areas. This results in a re- 

duced update for these areas if the absolute error is applied. The 

relative observation error is, on average, larger than the absolute 

observation error by a factor of about three. 

3.4. Simulation set-up 

3.4.1. Scenarios and implementations of precipitation and observation 

error 

Because stream water level was assimilated, observations were 

only available within streams. The challenge of this set-up was 

to estimate the water level and Manning’s n outside the streams, 

where no measurements were available. Two different scenarios of 

parameter heterogeneity were applied in combination with differ- 

ent implementations of precipitation forcing and observation error. 

For scenario A (SA), the model domain was divided into two 

discrete, discontinuous zones representing the streams and hill- 

slopes with different n . The zones were assigned according to the 

stream segmentation derived from the DEM with GRASS GIS. For 

scenario B (SB), the zone “hillslopes” from SA was additionally di- 

vided into the zones urban, field and forest according to land use 

in the sample catchment estimated from Google Earth Landsat im- 

ages. The distribution of these zones and the corresponding Google 

Earth map are shown in Fig. 2 . 

For scenario SA and SB, different cases of observation errors 

were considered. In the first case (c1), experiments were per- 

formed with error-free precipitation and an absolute observation 

error (as explained in Sections 3.3.2 and 3.3.3 ). In a second case 

(c2) a relative observation error was used in combination with 

error-free precipitation. The third case (c3) combines the relative 

observation error and perturbed precipitation forcing and is there- 

fore the most realistic one. To evaluate the need for spatially dis- 

tributed precipitation data for the proposed catchment tomography 

approach, a fourth case (c4) was added. For c4, spatially averaged, 

homogeneous precipitation fields were applied to the model real- 

izations SA and SB. These fields were generated by computing the 

spatial mean precipitation for every time step and realization of 

precipitation fields. This spatial average was then applied to every 

single grid cell. 

All experiments of an individual land cover scenario (SA and SB) 

are updated with synthetic observations from the same reference 

n . Every experiment was performed with 64 realizations. Table 1 

gives an overview of the experiments. 

3.4.2. Parameterization and ensemble generation 

The uncertainty of the empirical n is large and literature val- 

ues differ considerably. In order to use realistic values for the syn- 

thetic experiments, Manning’s coefficients n suggested in Karnahl 

(2008), Chow et al., (1988), Arcement and Schneider (1989) and 

Pasche et al. (2006) were considered for the land use and stream 

characteristics in the Swist and Upper Erft watersheds. Manning’s 

reference values for the different zones of SA and SB are sum- 

marized in Table 2 . The spatial distribution of n fields of the in- 

dividual ensemble members had the same areal zonation as the 
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Table 1 

Overview of data assimilation experiments. SA and SB are the different scenarios A and B with 2 and 4 

parameter zones, respectively. c1 – c4 are the four cases explained above. 

Exp. name # Parameter zones Precipitation Observation error Gauges 

With absolute observation error and error-free precipitation 

SA-c1 2 error-free absolute error real 

SB1-c1 4 error-free absolute error real 

SB1-c1 + S1 4 error-free absolute error real + S1 

SB2-c1 4 error-free absolute error real 

With variable observation error and error-free precipitation 

SA-c2 2 error-free 50% real 

SB1-c2 4 error-free 50% real 

SB1-c2 + S1 4 error-free 50% real + S1 

SB2-c2 4 error-free 50% real 

With variable observation error and perturbed precipitation 

SA-c3 2 perturbed 50% real 

SB1-c3 4 perturbed 50% real 

SB1-c3 + S1 4 perturbed 50% real + S1 

SB2-c3 4 perturbed 50% real 

With variable observation error, spatially homogeneous perturbed precipitation 

SB1-c4 4 perturbed, spat. homogeneous 50% real 

SB2-c4 4 perturbed, spat. homogeneous 50% real 

Table 2 

Reference and initial guess Manning’s values. 

Scenario Zone Reference n Lognormal distribution to draw initial n 

[min/m 1/3 ] Median [min/m 1/3 ] Log standard deviation [min/m 1/3 ] 

SA streams 0 .0 0 04 0 .0020 2 

hillslopes 0 .0020 0 .0 0 04 2 

SB1 streams 0 .0 0 07 0 .0010 1 

urban 0 .0 0 03 0 .0010 1 

fields 0 .0010 0 .0010 1 

forest 0 .0040 0 .0020 1 

SB2 streams 0 .0 0 07 0 .0010 2 

urban 0 .0 0 03 0 .0010 2 

fields 0 .0010 0 .0010 2 

forest 0 .0040 0 .0020 2 

respective reference fields, i.e. it was assumed that the zonation 

is known from e.g. satellite information. The n values were ho- 

mogeneous within each zone, but parameters of individual zones 

were perturbed independently from each other. They were drawn 

from lognormal distributions, as specified in Table 2 . SB consists of 

two experiments with different spreads in the initial n . SB1 has an 

initial parameter spread of standard deviation 1 and SB2 of stan- 

dard deviation 2. Note, that the major part of the urban zone of SB 

was ungauged. Therefore, in an additional experiment, a synthetic 

stream gauge (S1) was added in the unobserved area for evalu- 

ating the effect of the additional observations on the parameter 

estimation. 

3.5. Analysis of simulation results 

To evaluate the results of the parameter estimation the per- 

centage error and the coefficient of variation (CV) of the estimated 

Manning’s coefficients were determined. It was generally expected 

that n estimates improve with time, which allowed considering the 

n values at the end of the time series as best estimates. In order to 

avoid instantaneous, none-representative values in case of a fluctu- 

ating n parameter, not only the very last time steps but the mean 

of the last 24 update steps was considered as final estimate. 

For every stochastic realization the mean n value of the last 24 

update steps was computed and these values were averaged over 

the complete ensemble to calculate the logarithmic mean. This es- 

timated Manning’s value n est _ mean was compared to the reference 

n value and the percentage error was calculated: 

n est _ mean = exp 

( 

1 

64 

N 
∑ 

i=1 

log 

( 

1 

24 

nts 
∑ 

t= nts −23 

n est ( t, i ) 

) ) 

(4) 

er ror ( % ) = 

(

n est _ mean 

n ref 
− 1 

)

× 100 (5) 

with n est (t,i) being the estimated Manning’s coefficient at update 

step t and realization i, nts being the total number of update steps 

and n ref the reference Manning’s coefficient. 

The ensemble spread is evaluated with the coefficient of varia- 

tion, being the ratio of the standard deviation and the mean of the 

distribution: 

CV ( t ) = 
σ ( n est (t) ) 

µ( n est ( t ) ) 
(6) 

C V last24 = 
1 

24 

t= nts 
∑ 

t= nts −23 

CV ( t ) (7) 

The CV is used instead of the standard deviation or variance be- 

cause it allows comparing the ensemble spread of the different pa- 

rameter zones with different Manning’s n . Again, the mean of the 

coefficients of variation of the last 24 update steps is considered as 

the final CV . 

4. Results and discussion 

In SA and SB, estimated Manning’s coefficients are accurate and 

precise for the zones forest, field, hillslopes and streams in all cases 

with spatially distributed precipitation forcing (c1, c2 and c3). Er- 

rors in estimated n for these zones range from −5 to 16%. The per- 

centage errors and coefficients of variation of the final estimates 

are summarized in Table 3 and Table 4 . The Manning’s coefficient 

for the streams is estimated most accurately (the error is always 

less than 1%), because all water level observations are monitored 
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Fig. 3. Updated Manning’s coefficients with time for scenario A, (left) case 1: error-free precipitation and an absolute observation error; and (right) case 3: perturbed 

precipitation and a variable observation error. The catchment average precipitation intensity is shown at the bottom. 

Table 3 

Percentage error of estimated Manning’s coefficients. 

Runname Forest Field/Hill- slopes Urban Streams 

With absolute observation error and error-free precipitation 

SA-c1 0 .90 0 .22 

SB1-c1 0 .57 1 .24 108 .16 0 .03 

SB1-c1 + S1 −0 .37 4 .33 11 .42 −0 .05 

SB2-c1 1 .42 1 .63 91 .02 0 .04 

With variable observation error and error-free precipitation 

SA-c2 3 .83 0 .98 

SB1-c2 −0 .51 0 .18 357 .36 −0 .32 

SB1-c2 + S1 −2 .83 10 .61 45 .02 −0 .47 

SB2-c2 0 .77 3 .66 345 .02 −0 .41 

With variable observation error and perturbed precipitation 

SA-c3 3 .25 0 .84 

SB1-c3 −3 .78 6 .33 381 .62 −0 .45 

SB1-c3 + S1 −5 .18 15 .95 105 .31 −0 .81 

SB2-c3 −5 .13 8 .94 711 .99 −0 .72 

With variable observation error, spatially homogeneous perturbed precipitation 

SB1-c4 37 .23 −6 .48 146 .12 −4 .14 

SB2-c4 36 .01 −8 .77 1067 .44 −5 .53 

directly in the streams. Also, the two parameters of SA are esti- 

mated more accurately than for SB, which has four different pa- 

rameter values. The results of scenarios B1, B1 + S1 and B2, the lat- 

ter having a lager initial ensemble spread, are very similar in all 

three cases. Errors in estimated n are only slightly larger for SB2. 

For the first three and a half days of the simulation period there 

was no precipitation, except the temporally and spatially homoge- 

neous background flux. The system was in steady state, temporal 

changes in water level in the simulations are only introduced by 

the data assimilation and not by precipitation variations. Tempo- 

ral variability in stream water level, induced by temporal variable 

precipitation, is needed to be able to invert upstream parameters. 

Therefore, before the beginning of distributed precipitation, hardly 

any information on upstream parameters of the zones hillslopes, 

field, forest and urban areas could be inverted. On the other hand, 

the information gained by the synthetic observations in this period 

was enough to allow for an update of the streams’ Manning’s co- 

efficient. This was much more straightforward than for the other 

zones because all observation gauges are located in the streams. 

The parameter ensemble converges towards the reference value 

even before the start of distributed precipitation. With the start 

of precipitation at update step 89, the Manning’s n ensembles for 

Table 4 

Coefficient of variation (x 10 −2 ) of the ensemble of estimated Manning’s co- 

efficients. 

Runname Forest Field/Hill-slopes Urban Streams 

With absolute observation error and error-free precipitation 

SA-c1 0 .89 0 .21 

SB1-c1 2 .57 2 .48 41 .30 0 .21 

SB1-c1 + S1 2 .56 1 .90 13 .04 0 .21 

SB2-c1 2 .70 2 .22 42 .46 0 .21 

With variable observation error and error-free precipitation 

SA-c2 3 .82 0 .98 

SB1-c2 9 .27 9 .77 78 .64 0 .92 

SB1-c2 + S1 8 .20 7 .80 39 .70 0 .87 

SB2-c2 9 .15 8 .73 103 .25 0 .97 

With variable observation error and perturbed precipitation 

SA-c3 3 .25 0 .84 

SB1-c3 7 .38 8 .63 38 .34 0 .72 

SB1-c3 + S1 5 .51 7 .77 20 .60 0 .72 

SB2-c3 8 .07 7 .09 67 .42 1 .02 

With variable obs. error, spatially homogeneous perturbed precipitation 

SB1-c4 7 .48 9 .02 43 .00 1 .04 

SB2-c4 7 .55 10 .81 129 .45 1 .30 

hillslopes, field and forest rapidly converged towards the reference 

value. The temporal evolution of updated n is shown in Fig. 3 for 

SA-c1 SA-c3 and in Fig. 4 for SB1-c1, SB1-c2 and SB1-c3. 

Parameter estimation results of the urban zone are not accu- 

rate. The major part of the urban zone is located in the unobserved 

northeast of the modelling domain and outside of the actual Up- 

per Erft and Swist watersheds. Inside the actual catchment there 

are only small, distributed patches of urban areas. The parameter 

update was completely based on these small areas and therefore 

more difficult than the estimation of n for the streams, field or 

forest. Though for c1 an improvement in the estimate of the ur- 

ban zone’s n compared to the initial guess with an offset of about 

factor 3 (300%) to the reference value can be observed, for c2 and 

c3 there is no improvement in the n estimate compared to the ini- 

tial guess. Adding an additional stream gauge in the north eastern 

area significantly improves the parameter estimation in all cases, 

though the final estimation error is still substantially larger than 

for the other zones which are better observed. This case demon- 

strates the usefulness of numerical experiments in monitoring net- 

work design. 
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Impact of relative observation error 

Applying a relative but larger observation error, the spread in 

the estimated parameters increased considerably. The increased 

observation error of c2 compared to c1 reflects a larger uncertainty 

of the observations, which results in a smaller Kalman gain and 

therefore a smaller parameter update. The coefficients of variation 

of the updated parameter for c2 are larger than for c1 by a factor 

of three to four for all four experiments. Nevertheless, the final n 

estimates after the 30-days assimilation period exhibit about the 

same accuracy as with the smaller, absolute observation error. 

Impact of rain radar error 

Perturbed precipitation fields were applied to account for mea- 

surement uncertainty in radar precipitation data. For SA with only 

two parameters the estimation of the Manning’s n for case 3 (per- 

turbed precipitation) is as accurate as for case 2 (error-free pre- 

cipitation) (both with a large, variable observation error). For SB 

with four parameter zones the estimated n parameters are slightly 

less accurate in the case of perturbed precipitation, but still good 

(compare Table 3 ). The percentage error of the estimated parame- 

ters is about 3–5% larger if perturbed precipitation is applied (com- 

pared to error free precipitation). The final ensemble spread of n is 

slightly smaller if perturbed precipitation was applied, compared 

to the case of error free precipitation. The coefficient of variation 

for the last 24 time steps is 10–20% smaller for all experiments of 

case 3 compared to case 2 (compare Table 4 ). Considering the ad- 

ditional uncertainty introduced by the perturbation of the precipi- 

tation data, one could expect a larger ensemble spread. As shown 

in Fig. 5 the ensemble spread, here expressed as the ensemble 

variance, does initially decrease more slowly if precipitation is per- 

turbed, for all experiments. Once the parameter ensemble spread 

is already low, the ensemble converges stronger in the case of per- 

turbed precipitation resulting in a lower ensemble spread at the 

end of the assimilation time series. For the urban zone the ensem- 

ble spread clearly underestimates the uncertainty in the parameter 

estimate, because in the case of perturbed precipitation the en- 

semble of n urban does not cover the reference value. Possibly, the 

low ensemble spread of the other zones’ n underestimates the un- 

certainty, too. 

In a fourth case (c4), the realizations were forced with spa- 

tially averaged, homogeneous precipitation data to assess the im- 

portance of realistic, spatially distributed precipitation forcing for 

the parameter estimation. The final errors of n estimates are larger 

than with spatially distributed precipitation (case 3) by a factor 

of about 10 for the zones forest and streams. Still, n estimates 

for streams are reasonable, and the accuracy of the field-zone n 

is as good as with distributed precipitation. One reason may be 

the large spatial extensions of the zones, which mitigate the need 

for spatially distributed precipitation. Furthermore, the joint state- 

parameter update decreases the offset in water levels caused by 

the inaccurate precipitation forcing. Consequently, the offset in wa- 

ter level does not accumulate in time and facilitates the parameter 

estimation. Nevertheless, the results show that realistic, spatially 

distributed precipitation forcing is of advantage for the catchment 

tomography approach. 

Note, additionally to the discussed experiments, the concept 

was tested on a fully distributed Manning’s field with spatially cor- 

related n . This scenario was implemented with the variable obser- 

vation error and perturbed precipitation. Though a clear improve- 

ment in Manning’s estimates (compared to the initial guess) could 

be observed, the results are not yet satisfactory. The ensemble con- 

verged very fast to one Manning’s field, which resembles the ref- 

erence field but significant differences remained. Filter inbreeding 

inhibited the information potential of new observations. This sug- 

Fig. 4. Estimated Manning’s coefficients with time for scenario B1, (top) case 1: 

error-free precipitation and an absolute observation error, (middle) error-free pre- 

cipitation and variable observation error and (bottom) case 3: perturbed precipita- 

tion and a variable observation error. The catchment average precipitation intensity 

is shown at the bottom. 

gests that more complex scenarios require considerably larger en- 

semble sizes to handle filter inbreeding and sampling uncertainty, 

which can (at least partly) be mitigated by damping and covari- 

ance inflation. 

These results show that the estimation of a spatially distributed 

Manning’s n by assimilating water level observations into a hydro- 

logical model is efficient if highly distributed precipitation forc- 

ing is applied. During the major part of the 30-days modelling 

and assimilation period there was hardly any change on the up- 

dated parameters (compare Fig. 3 and Fig. 4 ), which means that 

shorter time series would have been similarly efficient. More im- 

portant than the length of the assimilation time series is the oc- 

currence of precipitation, which is demonstrated by the strong en- 

semble convergence with precipitation events. A strong increase in 
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Fig. 5. En semble variance of Manning’s n for error-free and perturbed precipitation forcing, (left) field and (right) forest, (top) SB1, (middle) SB1 + S1, (bottom) SB2. 

the observation error did not alter the parameter estimation ac- 

curacy and the larger uncertainty was realistically represented by 

a larger ensemble spread. This shows that the approach is robust 

in case of unbiased observation errors. In case of precipitation er- 

rors, increased uncertainty resulted in a slightly smaller ensemble 

spread. The issue of ensemble convergence or filter inbreeding for 

parameters estimated by data assimilation was already discussed 

by Franssen and Kinzelbach (2008) . Though it did not result in a 

problem in this study as the parameter estimates were still good, 

it is important to be aware that the ensemble spread of parame- 

ters estimated by a joint state-parameter estimation may not real- 

istically reflect the parameter uncertainty. 

For further developing the catchment tomography approach for 

distributed parameter estimation with physically based rainfall- 

runoff models, methods for maintaining the parameter ensem- 

ble spread will be beneficial. Further synthetic studies will be 

needed for advancing this approach towards a real world appli- 

cation. Currently catchment tomography is a novel, CPU intensive 

approach, where synthetic experiments are valuable for testing dif- 

ferent assimilation methods, methods to handle filter inbreeding 

and network design. The integration of a subsurface into the model 

will evoke several more research questions. A lower sensitivity of 

stream water level to the Manning’s coefficient may challenge this 

approach and raise the need for longer assimilation periods. Fur- 
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thermore, subsurface parameters will add additional uncertainty 

to the parameter estimation. The time lag between precipitation 

events and the resulting changes in observed stream water level 

will be larger once subsurface flow will be modeled. Thus, an en- 

semble Kalman smoother is expected to perform better than a fil- 

ter. These innovations will need further synthetic research before 

applying this CPU-intensive method to real-world problems. 

5. Summary and conclusions 

A catchment tomography approach was applied in synthetic ex- 

periments to estimate the spatially distributed Manning’s rough- 

ness coefficient. A 2D catchment model simulating overland flow 

was forced with high resolution radar precipitation data. Forward 

simulations were performed with the hydrologic model ParFlow, 

which has been coupled to the Parallel Data Assimilation Frame- 

work (PDAF) for data assimilation. Precipitation served as transmit- 

ter in this tomographic approach, generating runoff along different 

paths and resulting in an integrated signal in the form of frequent 

stream water level measurements. These measurements collected 

at synthetic gauges resembling the receivers, were assimilated into 

a hydrological model. By a joint state-parameter update with the 

Ensemble Kalman Filter these measurements were inverted to es- 

timate the Manning’s roughness coefficient. The uncertain Man- 

ning n coefficient was continuously constrained by sequentially in- 

tegrating new information. 

The proposed catchment tomography approach successfully es- 

timated the spatial distribution of Manning’s coefficient with only 

64 realizations. The parameter estimation became very effective as 

soon as there was spatially and temporally distributed precipita- 

tion. Only for an area located mostly outside of the gauged catch- 

ment the estimation of n was prone with large uncertainties be- 

cause of missing observations. Adding an additional observation 

gauge in this area reduced the uncertainty and provided better es- 

timates of the Manning’s coefficient. The approach is applicable to 

any catchment where stream flow is sensitive to the parameters 

to be estimated and high quality data of distributed precipitation, 

topography and stream water level observations are available. 

Experiments were performed with a spatio-temporally constant 

absolute observation error and with a more realistic relative, and 

also larger, observation error. Results showed that there was no in- 

crease in estimation error applying the larger relative observation 

error, but the remaining parameter uncertainty was better repre- 

sented by a larger ensemble spread of estimated n . When apply- 

ing perturbed precipitation fields the ensemble of estimated n con- 

verged slightly slower than with error-free precipitation. Neverthe- 

less, this resulted in an even smaller final ensemble spread, with a 

coefficient of variation about 10–20% smaller as for the case with 

error-free precipitation. Though estimation results had larger er- 

rors by 3–5% for the zones field and forest and 0.3% for the zone 

streams with perturbed than error-free precipitation forcing, over- 

all the impact of perturbed precipitation on the parameter estima- 

tion was very limited. Nevertheless the application of perturbed 

precipitation is important to account for the uncertainty in radar 

precipitation estimates, while this type of uncertainty does not ap- 

pear to significantly limit the efficiency of the suggested catchment 

tomography approach. 

Applying spatially averaged precipitation fields (instead of het- 

erogeneous fields) on the model realizations resulted in a larger es- 

timation error for the zones forest and streams by a factor of ten, 

while the estimated n for the zone field had the same errors as 

in the case with spatially distributed precipitation (about 6% and 

9% for SB1 and SB2, respectively). While zonation of parameters 

as applied for the presented experiments reduced the necessity of 

applying spatially distributed precipitation fields, realistic precipi- 

tation forcing resulted in significantly better parameter estimates, 

which we assume to be even more pronounced for more complex 

scenarios. 

The proposed catchment tomography approach showed overall 

good experimental results with a strong potential for further re- 

search and applications. Using larger ensemble sizes will likely en- 

able the estimation of fully distributed parameter fields. Depending 

on the future application, methods to reduce filter inbreeding or 

to account for the time lag between precipitation and water level 

measurements like a smoother, may be beneficial and will be sub- 

ject of further research. Thus, catchment tomography based on rain 

radar information is a promising method for distributed parame- 

ter estimation in catchment hydrology and valuable for improved 

flood prediction. 
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Appendix: The Ensemble Kalman Filter for joint state and 

parameter estimation 

The Kalman Filter 

The Kalman Filter is a sequential data assimilation method. A 

state forecast, usually a model simulation of the desired state, is 

updated with another estimate of the state or a related state, usu- 

ally an observation. The updated state vector, the so called analy- 

sis, is a linear combination of the forecasted state vector and the 

observation vector. The Kalman gain K weights the two estimates 

(model forecast and observation) according to their variances, min- 

imizing the variance of the resulting state analysis. The Kalman Fil- 

ter is therefore basically a maximum likelihood estimator. 

The state forecast s f of dimensions m ×1 contains the modelled 

states at all m spatial locations of the model grid. The state obser- 

vation vector y s of dimensions M s ×1 contains all M s available state 

observations. 

The state analysis vector s a is a linear combination of s f and y s : 

s a = s f + K 
(

y s − Hs f 
)

(A.1) 

where H ( M s ×m ) is the observation operator which maps the state 

vector s f on the observation vector y s . This is necessary because 

usually there are fewer observations than model grid cells and of- 

ten the measured state is related to, but not exactly the same as 

the modeled state. Hs f gives a model prediction of the observa- 

tions which are then compared to the real observations y s in the 

second term of (A.1): y s − Hs f . This difference between real and 

predicted observations is used to update the model state forecast 

in the analysis step. The Kalman gain K weights the uncertainties 

of model forecast and observations. The less uncertain the obser- 

vation is compared to the model forecast, the larger is the Kalman 

gain, and vice versa. The larger the Kalman gain, the larger the cor- 

rection K ( y s − Hs f ) which is added to the model forecast in the 

analysis step ( Eq. (A.1) ). 

In a scalar case, with m = 1 and M s = 1 the Kalman gain K is 

the variance of the model forecast σ 2 
f 
divided by the sum of the 
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variances of the model forecast and the observation σ 2 
obs 

: 

K = 
σ 2 

f 

σ 2 
f 

+ σ 2 
obs 

(A.2) 

In the scalar case the observation location is identical with the 

update location. In the vector case a distributed, gridded variable is 

updated with observations at few individual grid cells. The update 

location is mostly different from the observation location. There- 

fore, instead of considering a single variance of the state forecast, 

the Kalman gain is computed from the forecast error covariance 

matrix C ss and the observation error covariance matrix R. C ss con- 

tains the covariances of the variable to be updated for all grid cell 

combinations and has thus dimensions m ×m . R contains the co- 

variances between all observations and is here a diagonal matrix 

because observations are treated to be uncorrelated. 

The Kalman gain is then given by: 

K = C ss H 
T 
(

H C ss H 
T + R 

)−1 
(A.3) 

The ensemble Kalman Filter 

Eq. (A.3) demonstrates that the model forecast and observation 

error covariance matrices need to be known for every update. The 

ensemble Kalman Filter estimates the model error covariance ma- 

trix from an ensemble of possible model states s f 
i 
with realizations 

i = 1, ..., N . The ensemble mean of the state forecast s f 
i 
is assumed 

to be the best estimate of the true state. Instead of computing the 

model error covariance matrix from the deviation from the true, 

but unknown state vector s true : 

C ss = ( s f − s true ) ( s f − s true ) 
T 

(A.4) 

The model ensemble covariance matrix C e ss is estimated as: 

C e ss = (s f 
i 

− s f ) (s f 
i 

− s f ) 
T 

(A.5) 

where the overbar expresses the expected value. 

The model covariance matrix is approximated by the Ensemble 

Kalman Filter according: 

C e ss = 
1 

N − 1 

N 
∑ 

i =1 

(

s f 
i 

− s f 
)(

s f 
i 

− s f 
)T 

(A.6) 

The observations need to be perturbed as well to avoid an un- 

derestimation of the analysis ensemble covariance, as clarified by 

Burgers et al. (1998) . The ensemble of observations is generated by 

adding a random perturbation ε i with zero mean and a variance 

equal to the estimated measurement error variance: 

y s i = y s + ε i (A.7) 

Where y s i is the i 
th realization of the perturbed observation vector. 

Note that the perturbation of observations also causes addi- 

tional sampling errors and may therefore reduce the accuracy of 

the filter. For details and alternatives please refer to Whitaker and 

Hamill (2002) or Tippett et al. (2003) 

The ensemble state analysis vector s a 
i 
is computed by updating 

every ensemble member: 

s a i = s f 
i 

+ K 
(

y s i − Hs f 
i 

)

(A.8) 

Joint state-parameter estimating with EnKF 

Model parameters can be updated jointly with model states, 

with or without observations of the parameter itself. Therefore, the 

state forecast s f is augmented by the parameter vector p f to form 

a joint state-parameter vector x f 
i 
: 

x f 
i 

= 

[

s f 
i 

p f 
i 

]

(A.9) 

The parameters are here not anymore considered to be invari- 

able in time but are updated in the analysis step, just like the 

states. To apply this state augmentation approach with the EnKF, 

an ensemble of parameter samples, ideally representing the uncer- 

tainty of the parameter estimates, needs to be generated. 

If there are observations of the parameter available, the state 

observation vector is augmented to a state-parameter observation 

vector: 

y x i = 

[

y s i 
y p i 

]

(A.10) 

of dimension M s +M p . M p is the number of observed parameters. 

The total number of observations is M x = M s + M p . 

The model covariance matrix includes now states and param- 

eters. It is computed from the ensemble of joint state-parameter 

vectors and is given by: 

C e xx = 

[

C e ss C e sp 
C e ps C e pp 

]

(A.11) 

Note that in the case presented in this study there are no obser- 

vations of the parameter available so that M p =0 and y p i =0. The 

parameters are solely updated with state observations. Parameters 

will only be updated if the covariance between states and param- 

eters differs from zero. If state and parameter observations were 

available, both states and parameters could be updated by state 

and parameter observations. 

The augmented Kalman gain K x is computed now as follows: 

K x = C e xx H 
T 
x 

(

H x C 
e 
xx H 

T 
x + R x 

)−1 
(A.12) 

and has dimensions 2 m ×M x . The observation error covariance ma- 

trix R x has dimensions M x ×M x . 

The analyzed joint state-parameter vector x a 
i 

is computed as 

follows: 

x a i = x f 
i 

+ K x 

(

y x i − H x x 
f 
i 

)

(A.13) 

In this study the updated parameters contained in the vector 

p are logarithmic transformed Manning’s coefficients. The covari- 

ances and Kalman gain are calculated on the basis of logarithmic 

transformed Manning ́s coefficients. 

References 

Anderson, J.L. , 2001. An ensemble adjustment Kalman filter for data assimilation. 
Mon. Weather Rev. 129, 2884–2903 . 

Annan, J.D. , Hargreaves, J.C. , Edwards, N.R. , Marsh, R. , 2005. Parameter estimation 
in an intermediate complexity earth system model using an ensemble Kalman 
filter. Ocean Modell. 8, 135–154 . 

Arcement, G.J. , Schneider, V.R. , 1989. Guide for Selecting Manning’s Roughenss Co- 
efficients for Natural Channels And Flood Plains. US Geological Survey, p. 2339 . 

Ashby, S.F. , Falgout, R.D. , 1996. A parallel multigrid preconditioned conjugate gradi- 
ent algorithm for groundwater flow simulations. Nucl. Sci. Eng. 124, 145–159 . 

Bailey, R.T. , Bau, D. , 2012. Estimating geostatistical parameters and spatially-variable 
hydraulic conductivity within a catchment system using an ensemble smoother. 
Hydrol. Earth Syst. Sci. 16, 287–304 . 

Baldauf, M. , Seifert, A. , Forstner, J. , Majewski, D. , Raschendorfer, M. , Rein- 
hardt, T. , 2011. Operational convective-scale numerical weather prediction with 
the COSMO model: description and sensitivities. Mon. Weather Rev. 139, 
3887–3905 . 

Bishop, C.H. , Etherton, B.J. , Majumdar, S.J. , 2001. Adaptive sampling with the ensem- 
ble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Review 
129, 420–436 . 

Bourdin, D.R. , Fleming, S.W. , Stull, R.B. , 2012. Streamflow modelling: A primer on 
applications, approaches and challenges. Atmos. Ocean 50, 507–536 . 

Burgers, G. , van Leeuwen, P.J. , Evensen, G. , 1998. Analysis scheme in the ensemble 
Kalman filter. Mon. Weather Review 126, 1719–1724 . 

Camporese, M. , Paniconi, C. , Putti, M. , Salandin, P. , 2009a. Comparison of data assim- 
ilation techniques for a coupled model of surface and subsurface flow. Vadose 
Zone J. 8, 837–845 . 

Camporese, M. , Paniconi, C. , Putti, M. , Salandin, P. , 2009b. Ensemble Kalman filter 
data assimilation for a process-based catchment scale model of surface and sub- 
surface flow. Water Resour. Res. 45 . 

Chen, Y. , Zhang, D.X. , 2006. Data assimilation for transient flow in geologic forma- 
tions via ensemble Kalman filter. Adv. Water Res. 29, 1107–1122 . 



D. Baatz et al. / Advances in Water Resources 107 (2017) 147–159 159 

Chow, V.-T. , Mays, L.W. , Maidment, D.R. , 1988. Applied Hydrology. McGraw-Hill, New 
York . 

Clark, M.P. , Rupp, D.E. , Woods, R.A. , Zheng, X. , Ibbitt, R.P. , Slater, A.G. , Schmidt, J. , 
Uddstrom, M.J. , 2008. Hydrological data assimilation with the ensemble Kalman 
filter: Use of streamflow observations to update states in a distributed hydro- 
logical model. Adv. Water Res. 31, 1309–1324 . 

Di Baldassarre, G. , Montanari, A. , 2009. Uncertainty in river discharge observations: 
a quantitative analysis. Hydrol. Earth Syst. Sci. 13, 913–921 . 

Diederich, M. , Ryzhkov, A. , Simmer, C. , Zhang, P.F. , Tromel, S. , 2015a. Use of spe- 
cific attenuation for rainfall measurement at x-band radar wavelengths. part I: 
radar calibration and partial beam blockage estimation. J. Hydrometeorology 16, 
487–502 . 

Diederich, M. , Ryzhkov, A. , Simmer, C. , Zhang, P.F. , Tromel, S. , 2015b. Use of spe- 
cific attenuation for rainfall measurement at x-band radar wavelengths. part 
II: rainfall estimates and comparison with rain gauges. J. Hydrometeorology 16, 
503–516 . 

Ehrendorfer, M. , 2007. A review of issues in ensemble-based Kalman filtering. Me- 
teorol. Z. 16, 795–818 . 

Evensen, G. , 1994. Sequential data assimilation with a nonlinear quasi-geostrophic 
model using monte-carlo methods to forecast error statistics. J. Geophys. 
Res.-Oceans 99, 10143–10162 . 

Evensen, G. , van Leeuwen, P.J. , 20 0 0. An ensemble Kalman smoother for nonlinear 
dynamics. Mon. Weather Review 128, 1852–1867 . 

Franssen, H.J.H. , Kinzelbach, W. , 2008. Real-time groundwater flow modeling with 
the Ensemble Kalman Filter: Joint estimation of states and parameters and the 
filter inbreeding problem. Water Resour. Res. 44 . 

Houtekamer, P.L. , Mitchell, H.L. , 1998. Data assimilation using an ensemble Kalman 
filter technique. Mon. Weather Rev. 126, 796–811 . 

Jones, J.E. , Woodward, C.S. , 2001. Newton–Krylov-multigrid solvers for large-scale, 
highly heterogeneous, variably saturated flow problems. Adv. Water Res. 24, 
763–774 . 

Kalman, R.E. , 1960. A new approach to linear filtering and prediction problems. J. 
Basic Eng. 82 (1), 35–45 . 

Karnahl, J.A. , 2008. 2D numerische Modellierung von multifraktionalem Schwestoff- 
und Schadstofftransport in Flüssen. Eigenverlag des Instituts für Wasserbau der 
Universität Stuttgart 177 . 

Kitanidis, P.K. , Bras, R.L. , 1980a. Real-Time Forecasting with a Conceptual Hydrologic 
Model 0.1. Analysis of Uncertainty. Water Resour. Res. 16, 1025–1033 . 

Kitanidis, P.K. , Bras, R.L. , 1980b. Real-Time Forecasting with a Conceptual Hydrologic 
Model 0.2. Applications and Results. Water Resour. Res. 16, 1034–1044 . 

Kollet, S.J. , Maxwell, R.M. , 2006. Integrated surface-groundwater flow modeling: A 
free-surface overland flow boundary condition in a parallel groundwater flow 
model. Adv. Water Res. 29, 945–958 . 

Kollet, S.J. , Maxwell, R.M. , Woodward, C.S. , Smith, S. , Vanderborght, J. , Vereecken, H. , 
Simmer, C. , 2010. Proof of concept of regional scale hydrologic simulations at 
hydrologic resolution utilizing massively parallel computer resources. Water Re- 
sour. Res. 46 . 

Kurtz, W. , Franssen, H.J.H. , Vereecken, H. , 2012. Identification of time-variant river 
bed properties with the ensemble Kalman filter. Water Resour. Res. 48 . 

Kurtz, W. , HE, G. , Kollet, S.J. , Maxwell, R.M. , Vereecken, H. , Franssen, Hendricks , 
H., J. , 2016. TerrSysMP–PDAF (version 1.0): a modular high-performance data as- 
similation framework for an integrated land surface–subsurface model. Geosci. 
Model Dev. 9, 1341–1360 . 

Li, W. , Englert, A. , Cirpka, O.A. , Vanderborght, J. , Vereecken, H. , 2007. Two-dimen- 
sional characterization of hydraulic heterogeneity by multiple pumping tests. 
Water Resour. Res. 43 . 

Liu, Y. , Weerts, A.H. , Clark, M. , Franssen, H.J.H. , Kumar, S. , Moradkhani, H. , Seo, D.J. , 
Schwanenberg, D. , Smith, P. , Van Dijk, A.I.J.M. , Van Velzen, N. , He, M. , Lee, H. , 
Noh, S.J. , Rakovec, O. , Restrepo, P. , 2012. Advancing data assimilation in opera- 
tional hydrologic forecasting: progresses, challenges, and emerging opportuni- 
ties. Hydrol. Earth Syst. Sci. 16, 3863–3887 . 

Madsen, H. , Rosbjerg, D. , Damgard, J. , Hansen, F.S. , 2003. Data assimilation in the 
MIKE 11 flood forecasting system using Kalman filtering. In: Water Resources 
Systems-Hydrological Risk, Management and Development, pp. 75–81 . 

Maxwell, R.M. , Condon, L.E. , Kollet, S.J. , 2015. A high-resolution simulation of 
groundwater and surface water over most of the continental US with the in- 
tegrated hydrologic model ParFlow v3. Geosci. Model Dev. 8, 923–937 . 

Maxwell, R.M. , Kollet, S.J. , Smith, S.G. , Woodward, C.S. , Falgout, R.D. , Ferguson, I.M. , 
Baldwin, C. , Bosl, W.J. , Hornung, R. , Ashby, S. , 2010. ParFlow User’s Manual. In- 
ternational Ground Water Modeling Center 132 Report GWMI 2010-01 . 

Mclaughlin, D. , 2002. An integrated approach to hydrologic data assimilation: inter- 
polation, smoothing, and filtering. Adv. Water Res. 25, 1275–1286 . 

Mcmillan, H.K. , Hreinsson, E.O. , Clark, M.P. , Singh, S.K. , Zammit, C. , Uddstrom, M.J. , 
2013. Operational hydrological data assimilation with the recursive ensemble 
Kalman filter. Hydrol. Earth Syst. Sci. 17, 21–38 . 

Montzka, C. , Pauwels, V.R.N. , Franssen, H.J.H. , Han, X.J. , Vereecken, H. , 2012. Multi- 
variate and Multiscale Data Assimilation in Terrestrial Systems: A Review. Sen- 
sors 12, 16291–16333 . 

Moradkhani, H. , Sorooshian, S. , Gupta, H.V. , Houser, P.R. , 2005. Dual state-parameter 
estimation of hydrological models using ensemble Kalman filter. Adv. Water Res. 
28, 135–147 . 

Nerger, L. , Hiller, W. , 2013. Software for ensemble-based data assimilation system- 
s-Implementation strategies and scalability. Comput. Geosci. 55, 110–118 . 

Nerger, L. , Hiller, W. , Schroter, J. , 2005. PDAF - The parallel data assimilation frame- 
work: Experiences with Kalman filtering. Use of High Performance Computing 
in Meteorology 63–83 . 

Oleson, K.W. , Niu, G.Y. , Yang, Z.L. , Lawrence, D.M. , Thornton, P.E. , Lawrence, P.J. , 
Stockli, R. , Dickinson, R.E. , Bonan, G.B. , Levis, S. , Dai, A. , Qian, T. , 2008. Improve- 
ments to the Community Land Model and their impact on the hydrological cy- 
cle. J. Geophys. Res.-Biogeosci. 113 . 

Paiva, R.C.D. , Collischonn, W. , Bonnet, M.P. , De Goncalves, L.G.G. , Calmant, S. , Geti- 
rana, A. , Da Silva, J.S. , 2013. Assimilating in situ and radar altimetry data into a 
large-scale hydrologic-hydrodynamic model for streamflow forecast in the Ama- 
zon. Hydrol. Earth Syst. Sci. 17, 2929–2946 . 

Pasche, E. , Kräßig, S. , Lippert, K. , Nasermoaddeli, H. , Plöger, W. , Rath, S. , 2006. Wie 
viel Physik braucht die Strömungsberechnung in der Ingenieurpraxis. Dresdner 
wasserbauliche Mitteilungen 32 . 

Pathiraja, S. , Marshall, L. , Sharma, A. , Moradkhani, H. , 2016. Detecting non-stationary 
hydrologic model parameters in a paired catchment system using data assimi- 
lation. Adv. Water Res. 94, 103–119 . 

Pauwels, V.R.N. , De Lannoy, G.J.M. , 2006. Improvement of modeled soil wetness con- 
ditions and turbulent fluxes through the assimilation of observed discharge. J. 
Hydrometeorology 7, 458–477 . 

Pauwels, V.R.N. , De Lannoy, G.J.M. , 2009. Ensemble-based assimilation of discharge 
into rainfall-runoff models: A comparison of approaches to mapping observa- 
tional information to state space. Water Resour. Res. 45 . 

Pebesma, E.J. , 2004. Multivariable geostatistics in S: the gstat package. Computers 
Geosci. 30, 683–691 . 

Pokhrel, P. , Gupta, H.V. , 2011. On the ability to infer spatial catchment variability 
using streamflow hydrographs. Water Resour. Res. 47 . 

R Development Core Team, 2008. R: A language and Environment For Statistical 
Computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3- 
90 0 051-07-0URL http://www.R-project.org . 

Rakovec, O. , Weerts, A.H. , Hazenberg, P. , Torfs, P.J.J.F. , Uijlenhoet, R. , 2012. State up- 
dating of a distributed hydrological model with Ensemble Kalman Filtering: ef- 
fects of updating frequency and observation network density on forecast accu- 
racy. Hydrol. Earth Syst. Sci. 16, 3435–3449 . 

Rakovec, O. , Weerts, A.H. , Sumihar, J. , Uijlenhoet, R. , 2015. Operational aspects 
of asynchronous filtering for flood forecasting. Hydrol. Earth Syst. Sci. 19, 
2911–2924 . 

Rasmussen, J. , Madsen, H. , Jensen, K.H. , Refsgaard, J.C. , 2015. Data assimilation in 
integrated hydrological modeling using ensemble Kalman filtering: evaluating 
the effect of ensemble size and localization on filter performance. Hydrol. Earth 
Syst. Sci. Discuss. 12, 2267–2304 . 

Reichle, R.H. , 2008. Data assimilation methods in the Earth sciences. Adv. Water Res. 
31, 1411–1418 . 

Reichle, R.H. , Mclaughlin, D.B. , Entekhabi, D. , 2002a. Hydrologic data assimilation 
with the ensemble Kalman filter. Mon. Weather Review 130, 103–114 . 

Reichle, R.H. , Walker, J.P. , Koster, R.D. , Houser, P.R. , 2002b. Extended versus ensemble 
Kalman filtering for land data assimilation. J. Hydrometeorology 3, 728–740 . 

Sakov, P. , Evensen, G. , Bertino, L. , 2010. Asynchronous data assimilation with the 
EnKF. Tellus Series a-Dynamic Meteorology and Oceanography 62, 24–29 . 

Shi, Y.N. , Davis, K.J. , Zhang, F.Q. , Duffy, C.J. , Yu, X. , 2014. Parameter estimation of 
a physically based land surface hydrologic model using the ensemble Kalman 
filter: A synthetic experiment. Water Resour. Res. 50, 706–724 . 

Shrestha, P. , Sulis, M. , Masbou, M. , Kollet, S. , Simmer, C. , 2014. A Scale-Consistent 
Terrestrial Systems Modeling Platform Based on COSMO, CLM, and ParFlow. 
Mon. Weather Review 142, 3466–3483 . 

Tippett, M.K. , Anderson, J.L. , Bishop, C.H. , Hamill, T.M. , Whitaker, J.S. , 2003. Ensem- 
ble square root filters. Mon. Weather Review 131, 1485–1490 . 

Valcke, S. , 2013. The OASIS3 coupler: a European climate modelling community 
software. Geosci. Model Dev. 6, 373–388 . 

van Leeuwen, P.J. , 1999. Comment on “Data assimilation using an ensemble Kalman 
filter technique”. Mon. Weather Review 127, 1374–1377 . 

Vrugt, J.A. , Diks, C.G.H. , Gupta, H.V. , Bouten, W. , Verstraten, J.M. , 2005. Improved 
treatment of uncertainty in hydrologic modeling: Combining the strengths of 
global optimization and data assimilation. Water Resour. Res. 41 . 

Vrugt, J.A. , Gupta, H.V. , Nuallain, B.O. , 2006. Real-time data assimilation for opera- 
tional ensemble streamflow forecasting. J. Hydrometeorology 7, 548–565 . 

Whitaker, J.S. , Hamill, T.M. , 2002. Ensemble data assimilation without perturbed ob- 
servations. Mon. Weather Review 130, 1913–1924 . 

Yeh, T.C.J. , Liu, S.Y. , 20 0 0. Hydraulic tomography: Development of a new aquifer test 
method. Water Resour. Res. 36, 2095–2105 . 

Yeh, W.W.G. , 1986. Review of Parameter-Identification Procedures in Groundwater 
Hydrology - the Inverse Problem. Water Resour. Res. 22, 95–108 . 


