000838849 001__ 838849
000838849 005__ 20210129231644.0
000838849 0247_ $$2doi$$a10.1155/2017/7189421
000838849 0247_ $$2ISSN$$a0962-9351
000838849 0247_ $$2ISSN$$a1466-1861
000838849 0247_ $$2Handle$$a2128/15803
000838849 0247_ $$2WOS$$aWOS:000411709500001
000838849 0247_ $$2pmid$$apmid:29104378
000838849 037__ $$aFZJ-2017-07359
000838849 082__ $$a610
000838849 1001_ $$0P:(DE-HGF)0$$aLadwig, Anne$$b0
000838849 245__ $$aOsteopontin Augments M2 Microglia Response and Separates M1- and M2-Polarized Microglial Activation in Permanent Focal Cerebral Ischemia
000838849 260__ $$aSylvania, Ohio$$bHindawi Publishing Corp.$$c2017
000838849 3367_ $$2DRIVER$$aarticle
000838849 3367_ $$2DataCite$$aOutput Types/Journal article
000838849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510153096_32337
000838849 3367_ $$2BibTeX$$aARTICLE
000838849 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838849 3367_ $$00$$2EndNote$$aJournal Article
000838849 520__ $$aBackground. Focal cerebral ischemia induces distinct neuroinflammatory processes. We recently reported the extracellular phosphor-glyco-protein osteopontin (OPN) to directly affect primary microglia in vitro, promoting survival while shifting their inflammatory profile towards a more neutral phenotype. We here assessed the effects of OPN on microglia after stroke in vivo, with focus on infarct demarcation. Methods. Animals underwent focal photothrombotic stroke and were injected intracerebroventricularly with 500 μg OPN or vehicle. Immunohistochemistry assessed neuronal damage and infarct volume, neovascularisation, glial scar formation, microglial activation, and M1 and M2 polarisation. Results. After photothrombotic stroke, areas covered by M1 and M2 microglia substantially overlapped. OPN treatment reduced that overlap, with microglia appearing more spread out and additionally covering the infarct core. OPN additionally modulated the quantity of microglia subpopulations, reducing iNOS+ M1 cells while increasing M2 microglia, shifting the M1/M2 balance towards an M2 phenotype. Moreover, OPN polarized astrocytes towards the infarct. Conclusion. Microglial activation and M1 and M2 polarization have distinct but overlapping spatial patterns in permanent focal ischemia. Data suggest that OPN is involved in separating M1 and M2 subpopulations, as well as in shifting microglia polarization towards the M2 phenotype modulating beneficially inflammatory responses after focal infarction.
000838849 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000838849 588__ $$aDataset connected to CrossRef
000838849 7001_ $$0P:(DE-HGF)0$$aWalter, Helene Luise$$b1
000838849 7001_ $$0P:(DE-HGF)0$$aHucklenbroich, Jörg$$b2
000838849 7001_ $$0P:(DE-Juel1)144347$$aWilluweit, Antje$$b3
000838849 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b4
000838849 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b5
000838849 7001_ $$0P:(DE-HGF)0$$aRueger, Maria Adele$$b6
000838849 7001_ $$00000-0001-8441-4793$$aSchroeter, Michael$$b7$$eCorresponding author
000838849 773__ $$0PERI:(DE-600)2008065-7$$a10.1155/2017/7189421$$gVol. 2017, p. 1 - 11$$nArticle ID 7189421$$p11 pages$$tMediators of inflammation$$v2017$$x1466-1861$$y2017
000838849 8564_ $$uhttps://juser.fz-juelich.de/record/838849/files/7189421.pdf$$yOpenAccess
000838849 909CO $$ooai:juser.fz-juelich.de:838849$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000838849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144347$$aForschungszentrum Jülich$$b3$$kFZJ
000838849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b4$$kFZJ
000838849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
000838849 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000838849 9141_ $$y2017
000838849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838849 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000838849 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838849 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838849 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMEDIAT INFLAMM : 2015
000838849 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838849 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838849 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838849 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838849 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838849 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838849 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838849 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838849 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838849 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000838849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838849 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838849 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000838849 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000838849 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000838849 980__ $$ajournal
000838849 980__ $$aVDB
000838849 980__ $$aUNRESTRICTED
000838849 980__ $$aI:(DE-Juel1)INM-3-20090406
000838849 980__ $$aI:(DE-Juel1)INM-4-20090406
000838849 980__ $$aI:(DE-82)080010_20140620
000838849 9801_ $$aFullTexts