000838861 001__ 838861
000838861 005__ 20210129231647.0
000838861 0247_ $$2doi$$a10.1073/pnas.1708206114
000838861 0247_ $$2ISSN$$a0027-8424
000838861 0247_ $$2ISSN$$a1091-6490
000838861 0247_ $$2pmid$$apmid:28808031
000838861 0247_ $$2WOS$$aWOS:000408536000067
000838861 0247_ $$2altmetric$$aaltmetric:23835683
000838861 037__ $$aFZJ-2017-07371
000838861 082__ $$a000
000838861 1001_ $$0P:(DE-HGF)0$$aBar Eyal, Leeat$$b0
000838861 245__ $$aChanges in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria
000838861 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2017
000838861 3367_ $$2DRIVER$$aarticle
000838861 3367_ $$2DataCite$$aOutput Types/Journal article
000838861 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512479229_31852
000838861 3367_ $$2BibTeX$$aARTICLE
000838861 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838861 3367_ $$00$$2EndNote$$aJournal Article
000838861 520__ $$aIn this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching.
000838861 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000838861 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000838861 588__ $$aDataset connected to CrossRef
000838861 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000838861 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000838861 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000838861 7001_ $$00000-0003-4334-8907$$aRanjbar Choubeh, Reza$$b1
000838861 7001_ $$0P:(DE-HGF)0$$aCohen, Eyal$$b2
000838861 7001_ $$0P:(DE-HGF)0$$aEisenberg, Ido$$b3
000838861 7001_ $$0P:(DE-HGF)0$$aTamburu, Carmen$$b4
000838861 7001_ $$0P:(DE-HGF)0$$aDorogi, Márta$$b5
000838861 7001_ $$0P:(DE-HGF)0$$aÜnnep, Renata$$b6
000838861 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b7
000838861 7001_ $$0P:(DE-HGF)0$$aNevo, Reinat$$b8
000838861 7001_ $$0P:(DE-HGF)0$$aRaviv, Uri$$b9
000838861 7001_ $$0P:(DE-HGF)0$$aReich, Ziv$$b10
000838861 7001_ $$0P:(DE-HGF)0$$aGarab, Győző$$b11
000838861 7001_ $$0P:(DE-HGF)0$$avan Amerongen, Herbert$$b12
000838861 7001_ $$0P:(DE-HGF)0$$aPaltiel, Yossi$$b13
000838861 7001_ $$0P:(DE-HGF)0$$aKeren, Nir$$b14$$eCorresponding author
000838861 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1708206114$$gVol. 114, no. 35, p. 9481 - 9486$$n35$$p9481 - 9486$$tProceedings of the National Academy of Sciences of the United States of America$$v114$$x1091-6490$$y2017
000838861 8564_ $$uhttps://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.pdf$$yRestricted
000838861 8564_ $$uhttps://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.gif?subformat=icon$$xicon$$yRestricted
000838861 8564_ $$uhttps://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838861 8564_ $$uhttps://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838861 8564_ $$uhttps://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838861 8564_ $$uhttps://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838861 909CO $$ooai:juser.fz-juelich.de:838861$$pVDB$$pVDB:MLZ
000838861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b7$$kFZJ
000838861 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000838861 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000838861 9141_ $$y2017
000838861 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000838861 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838861 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838861 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838861 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2015
000838861 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838861 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838861 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838861 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838861 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838861 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838861 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000838861 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000838861 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000838861 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000838861 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2015
000838861 920__ $$lyes
000838861 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000838861 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000838861 980__ $$ajournal
000838861 980__ $$aVDB
000838861 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000838861 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000838861 980__ $$aUNRESTRICTED