Home > Publications database > Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria > print |
001 | 838861 | ||
005 | 20210129231647.0 | ||
024 | 7 | _ | |a 10.1073/pnas.1708206114 |2 doi |
024 | 7 | _ | |a 0027-8424 |2 ISSN |
024 | 7 | _ | |a 1091-6490 |2 ISSN |
024 | 7 | _ | |a pmid:28808031 |2 pmid |
024 | 7 | _ | |a WOS:000408536000067 |2 WOS |
024 | 7 | _ | |a altmetric:23835683 |2 altmetric |
037 | _ | _ | |a FZJ-2017-07371 |
082 | _ | _ | |a 000 |
100 | 1 | _ | |a Bar Eyal, Leeat |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria |
260 | _ | _ | |a Washington, DC |c 2017 |b National Acad. of Sciences |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1512479229_31852 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching. |
536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 0 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Biology |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Polymers, Soft Nano Particles and Proteins |0 V:(DE-MLZ)GC-1602-2016 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e KWS-2: Small angle scattering diffractometer |f NL3ao |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)KWS2-20140101 |5 EXP:(DE-MLZ)KWS2-20140101 |6 EXP:(DE-MLZ)NL3ao-20140101 |x 0 |
700 | 1 | _ | |a Ranjbar Choubeh, Reza |0 0000-0003-4334-8907 |b 1 |
700 | 1 | _ | |a Cohen, Eyal |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Eisenberg, Ido |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tamburu, Carmen |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Dorogi, Márta |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Ünnep, Renata |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Appavou, Marie-Sousai |0 P:(DE-Juel1)130507 |b 7 |
700 | 1 | _ | |a Nevo, Reinat |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Raviv, Uri |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Reich, Ziv |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Garab, Győző |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a van Amerongen, Herbert |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Paltiel, Yossi |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Keren, Nir |0 P:(DE-HGF)0 |b 14 |e Corresponding author |
773 | _ | _ | |a 10.1073/pnas.1708206114 |g Vol. 114, no. 35, p. 9481 - 9486 |0 PERI:(DE-600)1461794-8 |n 35 |p 9481 - 9486 |t Proceedings of the National Academy of Sciences of the United States of America |v 114 |y 2017 |x 1091-6490 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/838861/files/PNAS-2017-Bar%20Eyal-9481-6.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:838861 |p VDB:MLZ |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130507 |
913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 0 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b P NATL ACAD SCI USA : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b P NATL ACAD SCI USA : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k Neutronenstreuung ; JCNS-1 |l Neutronenstreuung |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|