000838875 001__ 838875
000838875 005__ 20210129231649.0
000838875 0247_ $$2doi$$a10.1039/C7NR04896C
000838875 0247_ $$2ISSN$$a2040-3364
000838875 0247_ $$2ISSN$$a2040-3372
000838875 0247_ $$2pmid$$apmid:28920125
000838875 0247_ $$2WOS$$aWOS:000412407300014
000838875 037__ $$aFZJ-2017-07381
000838875 041__ $$aEnglish
000838875 082__ $$a600
000838875 1001_ $$00000-0003-1874-9864$$aLa Torre, Camilla$$b0
000838875 245__ $$aVolatile HRS asymmetry and subloops in resistive switching oxides
000838875 260__ $$aCambridge$$bRSC Publ.$$c2017
000838875 3367_ $$2DRIVER$$aarticle
000838875 3367_ $$2DataCite$$aOutput Types/Journal article
000838875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510311215_27061
000838875 3367_ $$2BibTeX$$aARTICLE
000838875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838875 3367_ $$00$$2EndNote$$aJournal Article
000838875 520__ $$aCurrent–voltage characteristics of oxide-based resistive switching memories often show a pronounced asymmetry with respect to the voltage polarity in the high resistive state (HRS), where the HRS after the RESET is more conducting than the one before the SET. Here, we report that most of this HRS asymmetry is a volatile effect as the HRS obtained from a read operation differs from the one taken from the switching cycle at identical polarity and voltages. Transitions between the relaxed and the volatile excited states can be achieved via voltage sweeps, which are named subloops. The excited states are stable over time as long as a voltage is applied to the device and have a higher conductance than the stable relaxed state. Experimental data on the time and voltage dependence of the excitation and decay are presented for Ta/TaOx/Pt and Ta/ZrOx/Pt devices. The effect is not limited to one oxide or electrode material but is observed with different magnitudes (up to 10× current change) in several oxide systems. These observations describe an additional state variable of the memristive system that is controlled in a highly polarity dependent manner.
000838875 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000838875 588__ $$aDataset connected to CrossRef
000838875 7001_ $$00000-0001-6236-7391$$aKindsmüller, Andreas$$b1
000838875 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b2
000838875 7001_ $$0P:(DE-HGF)0$$aGraves, Catherine E.$$b3
000838875 7001_ $$00000-0002-9302-5906$$aGibson, Gary A.$$b4
000838875 7001_ $$0P:(DE-HGF)0$$aStrachan, John Paul$$b5
000838875 7001_ $$0P:(DE-HGF)0$$aWilliams, R. Stanley$$b6
000838875 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7
000838875 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b8$$eCorresponding author
000838875 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C7NR04896C$$gVol. 9, no. 38, p. 14414 - 14422$$n38$$p14414 - 14422$$tNanoscale$$v9$$x2040-3372$$y2017
000838875 8564_ $$uhttps://juser.fz-juelich.de/record/838875/files/c7nr04896c.pdf$$yRestricted
000838875 8564_ $$uhttps://juser.fz-juelich.de/record/838875/files/c7nr04896c.gif?subformat=icon$$xicon$$yRestricted
000838875 8564_ $$uhttps://juser.fz-juelich.de/record/838875/files/c7nr04896c.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838875 8564_ $$uhttps://juser.fz-juelich.de/record/838875/files/c7nr04896c.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838875 8564_ $$uhttps://juser.fz-juelich.de/record/838875/files/c7nr04896c.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838875 8564_ $$uhttps://juser.fz-juelich.de/record/838875/files/c7nr04896c.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838875 909CO $$ooai:juser.fz-juelich.de:838875$$pVDB
000838875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b7$$kFZJ
000838875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b8$$kFZJ
000838875 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000838875 9141_ $$y2017
000838875 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000838875 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838875 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838875 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838875 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838875 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838875 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838875 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838875 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838875 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000838875 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000838875 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000838875 980__ $$ajournal
000838875 980__ $$aVDB
000838875 980__ $$aI:(DE-Juel1)PGI-7-20110106
000838875 980__ $$aI:(DE-82)080009_20140620
000838875 980__ $$aUNRESTRICTED