001     838875
005     20210129231649.0
024 7 _ |a 10.1039/C7NR04896C
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a pmid:28920125
|2 pmid
024 7 _ |a WOS:000412407300014
|2 WOS
037 _ _ |a FZJ-2017-07381
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a La Torre, Camilla
|0 0000-0003-1874-9864
|b 0
245 _ _ |a Volatile HRS asymmetry and subloops in resistive switching oxides
260 _ _ |a Cambridge
|c 2017
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510311215_27061
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Current–voltage characteristics of oxide-based resistive switching memories often show a pronounced asymmetry with respect to the voltage polarity in the high resistive state (HRS), where the HRS after the RESET is more conducting than the one before the SET. Here, we report that most of this HRS asymmetry is a volatile effect as the HRS obtained from a read operation differs from the one taken from the switching cycle at identical polarity and voltages. Transitions between the relaxed and the volatile excited states can be achieved via voltage sweeps, which are named subloops. The excited states are stable over time as long as a voltage is applied to the device and have a higher conductance than the stable relaxed state. Experimental data on the time and voltage dependence of the excitation and decay are presented for Ta/TaOx/Pt and Ta/ZrOx/Pt devices. The effect is not limited to one oxide or electrode material but is observed with different magnitudes (up to 10× current change) in several oxide systems. These observations describe an additional state variable of the memristive system that is controlled in a highly polarity dependent manner.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kindsmüller, Andreas
|0 0000-0001-6236-7391
|b 1
700 1 _ |a Wouters, Dirk J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Graves, Catherine E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gibson, Gary A.
|0 0000-0002-9302-5906
|b 4
700 1 _ |a Strachan, John Paul
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Williams, R. Stanley
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 7
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 8
|e Corresponding author
773 _ _ |a 10.1039/C7NR04896C
|g Vol. 9, no. 38, p. 14414 - 14422
|0 PERI:(DE-600)2515664-0
|n 38
|p 14414 - 14422
|t Nanoscale
|v 9
|y 2017
|x 2040-3372
856 4 _ |u https://juser.fz-juelich.de/record/838875/files/c7nr04896c.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838875/files/c7nr04896c.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838875/files/c7nr04896c.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838875/files/c7nr04896c.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838875/files/c7nr04896c.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838875/files/c7nr04896c.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838875
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2015
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21