000838878 001__ 838878
000838878 005__ 20210129231649.0
000838878 0247_ $$2doi$$a10.1016/j.snb.2017.06.154
000838878 0247_ $$2ISSN$$a0925-4005
000838878 0247_ $$2ISSN$$a1873-3077
000838878 0247_ $$2WOS$$aWOS:000411124800079
000838878 037__ $$aFZJ-2017-07384
000838878 082__ $$a530
000838878 1001_ $$0P:(DE-HGF)0$$aGhosh, A.$$b0
000838878 245__ $$aUnderstanding on the selective carbon monoxide sensing characteristics of copper oxide-zinc oxide composite thin films
000838878 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000838878 3367_ $$2DRIVER$$aarticle
000838878 3367_ $$2DataCite$$aOutput Types/Journal article
000838878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510319555_27066
000838878 3367_ $$2BibTeX$$aARTICLE
000838878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838878 3367_ $$00$$2EndNote$$aJournal Article
000838878 520__ $$aIn the present work we have demonstrated CuO-ZnO composite thin film with optimized CuO content selectively sense carbon monoxide gas. The ‘n’-type gas sensing characteristics of these composite films are changed to ‘p’-type beyond 8.0 mol% CuO contents. Through the analyses of photoluminescence spectra in conjunction with XPS we have demonstrated that up to 33.0 mol% CuO contents the gas sensing characteristics of the composite films are controlled by the type of point defects (oxygen vacancies, zinc interstitials, and copper vacancies) in CuO and ZnO grains. We have hypothesized that these point defects help to chemi-absorb oxygen and CO preferentially on ZnO and CuO grains respectively to yield selective carbon monoxide sensing of ZnO-CuO composite film with 7.0 mol% CuO contents. Beyond 33.0 mol% CuO contents the effect of point defects diminishes and the gas sensing characteristic are grossly controlled by the nature of the CuO grains covering ZnO grains in the composite films. Our work provides comprehensive insight towards the understanding of the gas sensing characteristics of hetero-composite thin films deposited using a mixed precursor sol.
000838878 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000838878 588__ $$aDataset connected to CrossRef
000838878 7001_ $$0P:(DE-HGF)0$$aSchneller, T.$$b1
000838878 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2
000838878 7001_ $$0P:(DE-HGF)0$$aMajumder, S. B.$$b3$$eCorresponding author
000838878 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2017.06.154$$gVol. 253, p. 685 - 696$$p685 - 696$$tSensors and actuators <Lausanne> / B$$v253$$x0925-4005$$y2017
000838878 8564_ $$uhttps://juser.fz-juelich.de/record/838878/files/1-s2.0-S0925400517311735-main.pdf$$yRestricted
000838878 8564_ $$uhttps://juser.fz-juelich.de/record/838878/files/1-s2.0-S0925400517311735-main.gif?subformat=icon$$xicon$$yRestricted
000838878 8564_ $$uhttps://juser.fz-juelich.de/record/838878/files/1-s2.0-S0925400517311735-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838878 8564_ $$uhttps://juser.fz-juelich.de/record/838878/files/1-s2.0-S0925400517311735-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838878 8564_ $$uhttps://juser.fz-juelich.de/record/838878/files/1-s2.0-S0925400517311735-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838878 8564_ $$uhttps://juser.fz-juelich.de/record/838878/files/1-s2.0-S0925400517311735-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838878 909CO $$ooai:juser.fz-juelich.de:838878$$pVDB
000838878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b2$$kFZJ
000838878 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000838878 9141_ $$y2017
000838878 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSOR ACTUAT B-CHEM : 2015
000838878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838878 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838878 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838878 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838878 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838878 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000838878 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000838878 980__ $$ajournal
000838878 980__ $$aVDB
000838878 980__ $$aI:(DE-Juel1)PGI-7-20110106
000838878 980__ $$aI:(DE-82)080009_20140620
000838878 980__ $$aUNRESTRICTED