000838894 001__ 838894 000838894 005__ 20240712084519.0 000838894 020__ $$a978-3-89336-892-1 000838894 0247_ $$2GVK$$aGVK:770431399 000838894 0247_ $$2DE-101$$a(DE-101)1043124721 000838894 0247_ $$2Handle$$a2128/15814 000838894 0247_ $$2ISSN$$a1866-1793 000838894 037__ $$aFZJ-2017-07400 000838894 041__ $$aEnglish 000838894 082__ $$a500 000838894 1001_ $$0P:(DE-Juel1)138856$$aZimmermann, Thomas$$b0$$eCorresponding author$$gmale$$ufzj 000838894 245__ $$aHigh-rate growth of hydrogenated amorphous and microcrystalline silicon for thin-film silicon solar cells using dynamic very-high frequency plasma-enhanced chemical vapor deposition$$cThomas Zimmermann$$f - 2013-01-31 000838894 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2013 000838894 300__ $$a126 S : graph. Darst 000838894 3367_ $$2DataCite$$aOutput Types/Dissertation 000838894 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000838894 3367_ $$2ORCID$$aDISSERTATION 000838894 3367_ $$2BibTeX$$aPHDTHESIS 000838894 3367_ $$02$$2EndNote$$aThesis 000838894 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1598431698_2024 000838894 3367_ $$2DRIVER$$adoctoralThesis 000838894 4900_ $$aSchriften des Forschungszentrums Jülich / Reihe Energie & Umwelt$$v183 000838894 502__ $$aDissertation, Universität Dresden, 2013$$bDissertation$$cUniversität Dresden$$d2013 000838894 520__ $$aThin-film silicon tandem solar cells based on a hydrogenated amorphous silicon (a-Si:H) top-cell and a hydrogenated microcrystalline silicon (μc-Si:H) bottom-cell are a promising photovoltaic technology as they use a combination of absorber materials that is ideally suited for the solar spectrum. Additionally, the involved materials are abundant and non-toxic which is important for the manufacturing and application on a large scale. One of the most important factors for the application of photovoltaic technologies is the cost per watt. There are several ways to reduce this figure: increasing the efficiency of the solar cells, reducing the material consumption and increasing the throughput of the manufacturing equipment. The use of very-high frequencies has been proven to be beneficial for the material quality at high deposition rates thus enabling a high throughput and high solar cell efficiencies. In the present work a scalable very-high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique for state-of-the-art solar cells is developed. Linear plasma sources are applied which facilitate the use of very-high frequencies on large areas without compromising on the homogeneity of the deposition process. The linear plasma sources require a dynamic deposition process with the substrate passing by the electrodes in order to achieve a homogeneous deposition on large areas. State-of-the-art static radio-frequency (RF) PECVD processes are used as a referencein order to assess the potential of a dynamic VHF-PECVD technique for the growth of high-quality a-Si:H and $\mu$c-Si:H absorber layers at high rates. In chapter 4 the influence of the deposition process of the $\mu$c-Si:H i-layer on the solar cell performance is studied for static deposition processes. It is shown that the correlationbetween the i-layer growth rate, its crystallinity and the solar cell performance is similar for VHF- and RF-PECVD processes despite the different electrode configurations, excitation frequencies and process regimes. It is found that solar cells incorporating i-layers grown statically using VHF-PECVD processes obtain a state-of-the-art efficiency close to 8 % for growth rates up to 1.4 nm/s compared to 0.53 nm/s for RF-PECVD processes. [...] 000838894 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0 000838894 588__ $$aDataset connected to GVK 000838894 650_7 $$0(DE-588)4181740-0$$2gnd$$aSolarzelle 000838894 650_7 $$0(DE-588)4169828-9$$2gnd$$aMikrokristall 000838894 650_7 $$0(DE-588)4127342-4$$2gnd$$aSilicone 000838894 8564_ $$uhttps://juser.fz-juelich.de/record/838894/files/Energie%26Umwelt_183.pdf$$yOpenAccess 000838894 8564_ $$uhttps://juser.fz-juelich.de/record/838894/files/Energie%26Umwelt_183.gif?subformat=icon$$xicon$$yOpenAccess 000838894 8564_ $$uhttps://juser.fz-juelich.de/record/838894/files/Energie%26Umwelt_183.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000838894 8564_ $$uhttps://juser.fz-juelich.de/record/838894/files/Energie%26Umwelt_183.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000838894 8564_ $$uhttps://juser.fz-juelich.de/record/838894/files/Energie%26Umwelt_183.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000838894 8564_ $$uhttps://juser.fz-juelich.de/record/838894/files/Energie%26Umwelt_183.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000838894 909CO $$ooai:juser.fz-juelich.de:838894$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000838894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138856$$aForschungszentrum Jülich$$b0$$kFZJ 000838894 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000838894 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000838894 920__ $$lyes 000838894 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0 000838894 9801_ $$aFullTexts 000838894 980__ $$aphd 000838894 980__ $$aVDB 000838894 980__ $$abook 000838894 980__ $$aI:(DE-Juel1)IEK-5-20101013 000838894 980__ $$aUNRESTRICTED 000838894 981__ $$aI:(DE-Juel1)IMD-3-20101013