000838901 001__ 838901
000838901 005__ 20240711101520.0
000838901 0247_ $$2doi$$a10.1016/j.ijhydene.2017.04.183
000838901 0247_ $$2ISSN$$a0360-3199
000838901 0247_ $$2ISSN$$a1879-3487
000838901 0247_ $$2WOS$$aWOS:000407657900050
000838901 037__ $$aFZJ-2017-07407
000838901 082__ $$a660
000838901 1001_ $$0P:(DE-HGF)0$$aJiang, Hongliang$$b0
000838901 245__ $$aExperimental study on dual recirculation of polymer electrolyte membrane fuel cell
000838901 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000838901 3367_ $$2DRIVER$$aarticle
000838901 3367_ $$2DataCite$$aOutput Types/Journal article
000838901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510319365_27061
000838901 3367_ $$2BibTeX$$aARTICLE
000838901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838901 3367_ $$00$$2EndNote$$aJournal Article
000838901 520__ $$aDurability and start-up ability in sub-zero environment are two technical bottlenecks of vehicular polymer electrolyte membrane (PEM) fuel cell systems. With exhaust gas recirculation on the anode and cathode side, the cell voltage at low current density can be reduced, and the membrane can be humidified without external humidifier. They may be helpful to prolong the working lifetime and to promote the start-up ability. This paper presents an experimental study on a PEM fuel cell system with anodic and cathodic recirculation. The system is built up based on a 10 kW fuel cell stack, which consists of 50 cells and has an active area of 261 cm2. A cathodic recirculation pump and a hydrogen recirculation pump are utilized on the cathode and anode side, respectively. Key parameters, e.g., stack current, stack voltage, cell voltage, air flow, relative humidity on the cathode side, oxygen concentration at the inlet and outlet of the cathode side, are measured. Results show that: 1) with a cathodic recirculation the system gets good self-humidification effect, which is similar to that with an external humidifier; 2) with a cathodic recirculation and a reduction of fresh air flux, the cell voltage can be obviously reduced; 3) with an anodic recirculation the cell voltage can also be reduced due to a reduction in the hydrogen partial pressure, the relative humidity on the cathode side is a little smaller than the case with only cathode recirculation. It indicates that, for our stack the cathodic recirculation is effective to clamp cell voltage at low current density, and a self-humidification system is possible with cathodic recirculation. Further study will focus on the dynamic model and control of the dual recirculation fuel cell system.
000838901 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000838901 588__ $$aDataset connected to CrossRef
000838901 7001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b1
000838901 7001_ $$0P:(DE-HGF)0$$aFang, Chuan$$b2
000838901 7001_ $$0P:(DE-HGF)0$$aZhao, Xingwang$$b3
000838901 7001_ $$0P:(DE-HGF)0$$aHu, Zunyan$$b4
000838901 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b5
000838901 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b6$$eCorresponding author
000838901 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.04.183$$gVol. 42, no. 29, p. 18551 - 18559$$n29$$p18551 - 18559$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000838901 8564_ $$uhttps://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.pdf$$yRestricted
000838901 8564_ $$uhttps://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.gif?subformat=icon$$xicon$$yRestricted
000838901 8564_ $$uhttps://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838901 8564_ $$uhttps://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838901 8564_ $$uhttps://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838901 8564_ $$uhttps://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838901 909CO $$ooai:juser.fz-juelich.de:838901$$pVDB
000838901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b1$$kFZJ
000838901 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000838901 9141_ $$y2017
000838901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838901 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838901 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838901 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838901 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838901 920__ $$lyes
000838901 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838901 980__ $$ajournal
000838901 980__ $$aVDB
000838901 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838901 980__ $$aUNRESTRICTED
000838901 981__ $$aI:(DE-Juel1)ICE-2-20101013