001     838901
005     20240711101520.0
024 7 _ |a 10.1016/j.ijhydene.2017.04.183
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000407657900050
|2 WOS
037 _ _ |a FZJ-2017-07407
082 _ _ |a 660
100 1 _ |a Jiang, Hongliang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Experimental study on dual recirculation of polymer electrolyte membrane fuel cell
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510319365_27061
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Durability and start-up ability in sub-zero environment are two technical bottlenecks of vehicular polymer electrolyte membrane (PEM) fuel cell systems. With exhaust gas recirculation on the anode and cathode side, the cell voltage at low current density can be reduced, and the membrane can be humidified without external humidifier. They may be helpful to prolong the working lifetime and to promote the start-up ability. This paper presents an experimental study on a PEM fuel cell system with anodic and cathodic recirculation. The system is built up based on a 10 kW fuel cell stack, which consists of 50 cells and has an active area of 261 cm2. A cathodic recirculation pump and a hydrogen recirculation pump are utilized on the cathode and anode side, respectively. Key parameters, e.g., stack current, stack voltage, cell voltage, air flow, relative humidity on the cathode side, oxygen concentration at the inlet and outlet of the cathode side, are measured. Results show that: 1) with a cathodic recirculation the system gets good self-humidification effect, which is similar to that with an external humidifier; 2) with a cathodic recirculation and a reduction of fresh air flux, the cell voltage can be obviously reduced; 3) with an anodic recirculation the cell voltage can also be reduced due to a reduction in the hydrogen partial pressure, the relative humidity on the cathode side is a little smaller than the case with only cathode recirculation. It indicates that, for our stack the cathodic recirculation is effective to clamp cell voltage at low current density, and a self-humidification system is possible with cathodic recirculation. Further study will focus on the dynamic model and control of the dual recirculation fuel cell system.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 1
700 1 _ |a Fang, Chuan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhao, Xingwang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hu, Zunyan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.ijhydene.2017.04.183
|g Vol. 42, no. 29, p. 18551 - 18559
|0 PERI:(DE-600)1484487-4
|n 29
|p 18551 - 18559
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838901/files/1-s2.0-S0360319917315914-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838901
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168338
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21