000838902 001__ 838902
000838902 005__ 20240711101521.0
000838902 0247_ $$2doi$$a10.1016/j.ijhydene.2017.04.191
000838902 0247_ $$2ISSN$$a0360-3199
000838902 0247_ $$2ISSN$$a1879-3487
000838902 0247_ $$2WOS$$aWOS:000407657900053
000838902 037__ $$aFZJ-2017-07408
000838902 082__ $$a660
000838902 1001_ $$0P:(DE-HGF)0$$aPan, Hao$$b0
000838902 245__ $$aControl-oriented modeling of gas purging process on the cathode of polymer electrolyte membrane fuel cell during shutting down
000838902 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000838902 3367_ $$2DRIVER$$aarticle
000838902 3367_ $$2DataCite$$aOutput Types/Journal article
000838902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510318662_27065
000838902 3367_ $$2BibTeX$$aARTICLE
000838902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838902 3367_ $$00$$2EndNote$$aJournal Article
000838902 520__ $$aGas purging process of cathode side during the shut-down procedure of a polymer electrolyte membrane fuel cell (PEMFC) system is of great importance for a successful cold start. This paper proposes a study on the modeling and control of the cathodic gas purging process, whose main purpose is to remove liquid water in the gas diffusion layer (GDL) and the membrane. The water removal process can be divided into three steps, which are called (a) the through-plane drying of the GDL, (b) the in-plane drying of the GDL, and (c) the vapor-transport from the membrane. A nonlinear model is firstly developed to describe the water removal process in the GDL and the membrane. It includes a one-dimensional three-step purging sub-model and an energy consumption sub-model considering the properties of the air compressor. Experiments are carried out to validate the water-remove model by using the membrane HFR. An optimal constant purging control strategy that minimizes energy consumption during the cathodic purging process is designed based on the model and verified in simulation.
000838902 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000838902 588__ $$aDataset connected to CrossRef
000838902 7001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b1
000838902 7001_ $$0P:(DE-HGF)0$$aCheng, Siliang$$b2
000838902 7001_ $$0P:(DE-HGF)0$$aSun, Weihua$$b3
000838902 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b4
000838902 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b5$$eCorresponding author
000838902 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.04.191$$gVol. 42, no. 29, p. 18584 - 18594$$n29$$p18584 - 18594$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000838902 8564_ $$uhttps://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.pdf$$yRestricted
000838902 8564_ $$uhttps://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.gif?subformat=icon$$xicon$$yRestricted
000838902 8564_ $$uhttps://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838902 8564_ $$uhttps://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838902 8564_ $$uhttps://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838902 8564_ $$uhttps://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838902 909CO $$ooai:juser.fz-juelich.de:838902$$pVDB
000838902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b1$$kFZJ
000838902 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000838902 9141_ $$y2017
000838902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838902 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838902 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838902 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838902 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838902 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838902 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838902 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838902 920__ $$lyes
000838902 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838902 980__ $$ajournal
000838902 980__ $$aVDB
000838902 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838902 980__ $$aUNRESTRICTED
000838902 981__ $$aI:(DE-Juel1)ICE-2-20101013