001     838902
005     20240711101521.0
024 7 _ |a 10.1016/j.ijhydene.2017.04.191
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000407657900053
|2 WOS
037 _ _ |a FZJ-2017-07408
082 _ _ |a 660
100 1 _ |a Pan, Hao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Control-oriented modeling of gas purging process on the cathode of polymer electrolyte membrane fuel cell during shutting down
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510318662_27065
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gas purging process of cathode side during the shut-down procedure of a polymer electrolyte membrane fuel cell (PEMFC) system is of great importance for a successful cold start. This paper proposes a study on the modeling and control of the cathodic gas purging process, whose main purpose is to remove liquid water in the gas diffusion layer (GDL) and the membrane. The water removal process can be divided into three steps, which are called (a) the through-plane drying of the GDL, (b) the in-plane drying of the GDL, and (c) the vapor-transport from the membrane. A nonlinear model is firstly developed to describe the water removal process in the GDL and the membrane. It includes a one-dimensional three-step purging sub-model and an energy consumption sub-model considering the properties of the air compressor. Experiments are carried out to validate the water-remove model by using the membrane HFR. An optimal constant purging control strategy that minimizes energy consumption during the cathodic purging process is designed based on the model and verified in simulation.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 1
700 1 _ |a Cheng, Siliang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sun, Weihua
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.ijhydene.2017.04.191
|g Vol. 42, no. 29, p. 18584 - 18594
|0 PERI:(DE-600)1484487-4
|n 29
|p 18584 - 18594
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838902
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168338
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21