| Home > Publications database > Control-oriented modeling of gas purging process on the cathode of polymer electrolyte membrane fuel cell during shutting down > print |
| 001 | 838902 | ||
| 005 | 20240711101521.0 | ||
| 024 | 7 | _ | |a 10.1016/j.ijhydene.2017.04.191 |2 doi |
| 024 | 7 | _ | |a 0360-3199 |2 ISSN |
| 024 | 7 | _ | |a 1879-3487 |2 ISSN |
| 024 | 7 | _ | |a WOS:000407657900053 |2 WOS |
| 037 | _ | _ | |a FZJ-2017-07408 |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Pan, Hao |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Control-oriented modeling of gas purging process on the cathode of polymer electrolyte membrane fuel cell during shutting down |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2017 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1510318662_27065 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Gas purging process of cathode side during the shut-down procedure of a polymer electrolyte membrane fuel cell (PEMFC) system is of great importance for a successful cold start. This paper proposes a study on the modeling and control of the cathodic gas purging process, whose main purpose is to remove liquid water in the gas diffusion layer (GDL) and the membrane. The water removal process can be divided into three steps, which are called (a) the through-plane drying of the GDL, (b) the in-plane drying of the GDL, and (c) the vapor-transport from the membrane. A nonlinear model is firstly developed to describe the water removal process in the GDL and the membrane. It includes a one-dimensional three-step purging sub-model and an energy consumption sub-model considering the properties of the air compressor. Experiments are carried out to validate the water-remove model by using the membrane HFR. An optimal constant purging control strategy that minimizes energy consumption during the cathodic purging process is designed based on the model and verified in simulation. |
| 536 | _ | _ | |a 135 - Fuel Cells (POF3-135) |0 G:(DE-HGF)POF3-135 |c POF3-135 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Xu, Liangfei |0 P:(DE-Juel1)168338 |b 1 |
| 700 | 1 | _ | |a Cheng, Siliang |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Sun, Weihua |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Li, Jianqiu |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Ouyang, Minggao |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.ijhydene.2017.04.191 |g Vol. 42, no. 29, p. 18584 - 18594 |0 PERI:(DE-600)1484487-4 |n 29 |p 18584 - 18594 |t International journal of hydrogen energy |v 42 |y 2017 |x 0360-3199 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838902/files/1-s2.0-S0360319917315999-main.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:838902 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)168338 |
| 913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-135 |2 G:(DE-HGF)POF3-100 |v Fuel Cells |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2017 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J HYDROGEN ENERG : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-3-20101013 |k IEK-3 |l Elektrochemische Verfahrenstechnik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-3-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|