001     838906
005     20240711101521.0
024 7 _ |a 10.1016/j.ijhydene.2017.06.035
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000408297500041
|2 WOS
037 _ _ |a FZJ-2017-07412
082 _ _ |a 660
100 1 _ |a Hong, Po
|0 0000-0002-2148-6172
|b 0
245 _ _ |a A new approach to online AC impedance measurement at high frequency of PEM fuel cell stack
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510318308_27059
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the PEM fuel cell system, the water management strategy is founded on the accurate water content estimation while until now it is still a large obstacle that prevents the application in the field of transportation. Focused on this problem, approaches such as the multi-mixture model have been put forward to estimate the water content but there exist some limitations. Some recent literature work shows that if they are combined with the AC impedance measurement at high frequency the estimation accuracy will be further improved. Hence, in this paper a new approach to online AC impedance measurement at high frequency is proposed by paralleling a DC/DC converter with the PEM fuel cell stack. Then the mathematical model of the stack and the converter is developed and analyzed to verify the feasibility of this method. After that, the DC/DC converter is designed and an experiment is performed on a 30 kW stack of 120-serial cells. To calculate the impedance of a cell, the cell voltage monitor is used to simultaneously measure the output current of the stack and the voltage of each cell and this device is experimentally calibrated. Under pre-scheduled experiment conditions, the variation trend of the impedance at 320 Hz of two cells in serial as a unit validates the capability of AC impedance measurement at high frequency using the DC/DC converter.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 1
700 1 _ |a Jiang, Hongliang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.ijhydene.2017.06.035
|g Vol. 42, no. 30, p. 19156 - 19169
|0 PERI:(DE-600)1484487-4
|n 30
|p 19156 - 19169
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/838906/files/1-s2.0-S0360319917323017-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838906/files/1-s2.0-S0360319917323017-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838906/files/1-s2.0-S0360319917323017-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838906/files/1-s2.0-S0360319917323017-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838906/files/1-s2.0-S0360319917323017-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838906/files/1-s2.0-S0360319917323017-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838906
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168338
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21