000838908 001__ 838908
000838908 005__ 20240711101521.0
000838908 0247_ $$2doi$$a10.1016/j.ijhydene.2017.07.210
000838908 0247_ $$2ISSN$$a0360-3199
000838908 0247_ $$2ISSN$$a1879-3487
000838908 0247_ $$2WOS$$aWOS:000412612300053
000838908 037__ $$aFZJ-2017-07414
000838908 082__ $$a660
000838908 1001_ $$0P:(DE-HGF)0$$aZhang, Qinguo$$b0
000838908 245__ $$aPerformance prediction of plate-fin radiator for low temperature preheating system of proton exchange membrane fuel cells using CFD simulation
000838908 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000838908 3367_ $$2DRIVER$$aarticle
000838908 3367_ $$2DataCite$$aOutput Types/Journal article
000838908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510318000_27057
000838908 3367_ $$2BibTeX$$aARTICLE
000838908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838908 3367_ $$00$$2EndNote$$aJournal Article
000838908 520__ $$aThe objective of this paper is to analyze the heat transfer characteristics of plate-fin radiator for the cold air heating system of a PEMFC engine and to find the optimal parameter combination in order to reduce the power consumption. The effect of the coolant mass flow and temperature on the heat exchange performance of the radiator was investigated based on 3D porous medium model. The results, including the amount of heat transferred and temperature change and heat exchanger effectivity with the increasing of the air flow rate at different coolant flow rate were obtained using CFD method. Good agreement is found by comparing the simulation values with the test data and the deviation is less than 7% which indicate simulation model validation and research method feasibility used in this study. The simulation results indicate that bigger coolant flow rate and temperature result in higher outlet air temperature and the amount of heat transferred. The variation of the heat exchanger effectivity is predicted for different working conditions. Based on the Taguchi method, the influence of structural parameters of the corrugated fins on the heat transfer and pressure drop of the radiator is analyzed qualitatively. It is shown that fin length has the greatest impact on the comprehensive heat transfer performance of the radiator. This research provides a guide for optimizing the air preheating system and improving the amount of heat transferred.
000838908 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000838908 588__ $$aDataset connected to CrossRef
000838908 7001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b1
000838908 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b2$$eCorresponding author
000838908 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b3
000838908 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.07.210$$gVol. 42, no. 38, p. 24504 - 24516$$n38$$p24504 - 24516$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000838908 8564_ $$uhttps://juser.fz-juelich.de/record/838908/files/1-s2.0-S0360319917331208-main.pdf$$yRestricted
000838908 8564_ $$uhttps://juser.fz-juelich.de/record/838908/files/1-s2.0-S0360319917331208-main.gif?subformat=icon$$xicon$$yRestricted
000838908 8564_ $$uhttps://juser.fz-juelich.de/record/838908/files/1-s2.0-S0360319917331208-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838908 8564_ $$uhttps://juser.fz-juelich.de/record/838908/files/1-s2.0-S0360319917331208-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838908 8564_ $$uhttps://juser.fz-juelich.de/record/838908/files/1-s2.0-S0360319917331208-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838908 8564_ $$uhttps://juser.fz-juelich.de/record/838908/files/1-s2.0-S0360319917331208-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838908 909CO $$ooai:juser.fz-juelich.de:838908$$pVDB
000838908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b1$$kFZJ
000838908 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000838908 9141_ $$y2017
000838908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838908 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838908 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838908 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838908 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838908 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838908 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838908 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838908 920__ $$lyes
000838908 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838908 980__ $$ajournal
000838908 980__ $$aVDB
000838908 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838908 980__ $$aUNRESTRICTED
000838908 981__ $$aI:(DE-Juel1)ICE-2-20101013