000838910 001__ 838910
000838910 005__ 20240712113249.0
000838910 0247_ $$2doi$$a10.1016/j.ijhydene.2017.02.203
000838910 0247_ $$2ISSN$$a0360-3199
000838910 0247_ $$2ISSN$$a1879-3487
000838910 0247_ $$2WOS$$aWOS:000403381400089
000838910 037__ $$aFZJ-2017-07416
000838910 082__ $$a660
000838910 1001_ $$00000-0001-8430-6346$$aCheng, Siliang$$b0
000838910 245__ $$aOptimal warm-up control strategy of the PEMFC system on a city bus aimed at improving efficiency
000838910 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000838910 3367_ $$2DRIVER$$aarticle
000838910 3367_ $$2DataCite$$aOutput Types/Journal article
000838910 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582879109_13830
000838910 3367_ $$2BibTeX$$aARTICLE
000838910 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838910 3367_ $$00$$2EndNote$$aJournal Article
000838910 520__ $$aProton exchange membrane fuel cells (PEMFC) are considered an ideal solution for zero-emission vehicles. This study focuses on the warm-up strategy of the PEMFC system in an energy-type power train, which is widely used on city buses. Firstly, a system model was built and validated by experimental data. Based on the model, a dynamic programming (DP) algorithm was utilized to determine a warm-up method that optimizes global efficiency. Then, a rule-based analysis was carried out and a three-step strategy based on the DP algorithm was proposed in order to satisfy the demand of real-time control. Simulation results show that the efficiency optimization of the three-step strategy is very close to that of the dynamic programming algorithm. In addition, the effects of warm-up time and environment temperature on efficiency are discussed. Results show that a longer warm-up time and a higher environment temperature are helpful for improving efficiency.
000838910 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000838910 588__ $$aDataset connected to CrossRef
000838910 7001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b1
000838910 7001_ $$0P:(DE-HGF)0$$aWu, Kai$$b2
000838910 7001_ $$0P:(DE-HGF)0$$aFang, Chuan$$b3
000838910 7001_ $$0P:(DE-HGF)0$$aHu, Junming$$b4
000838910 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b5$$eCorresponding author
000838910 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b6
000838910 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.02.203$$gVol. 42, no. 16, p. 11632 - 11643$$n16$$p11632 - 11643$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000838910 8564_ $$uhttps://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.pdf$$yRestricted
000838910 8564_ $$uhttps://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.gif?subformat=icon$$xicon$$yRestricted
000838910 8564_ $$uhttps://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838910 8564_ $$uhttps://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838910 8564_ $$uhttps://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838910 8564_ $$uhttps://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838910 909CO $$ooai:juser.fz-juelich.de:838910$$pVDB
000838910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b1$$kFZJ
000838910 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000838910 9141_ $$y2017
000838910 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838910 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838910 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838910 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838910 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838910 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838910 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838910 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838910 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838910 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838910 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838910 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838910 920__ $$lyes
000838910 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000838910 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000838910 980__ $$ajournal
000838910 980__ $$aVDB
000838910 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838910 980__ $$aI:(DE-Juel1)IEK-14-20191129
000838910 980__ $$aUNRESTRICTED
000838910 981__ $$aI:(DE-Juel1)ICE-2-20101013
000838910 981__ $$aI:(DE-Juel1)IET-4-20191129
000838910 981__ $$aI:(DE-Juel1)IET-4-20191129