| Home > Publications database > Optimal warm-up control strategy of the PEMFC system on a city bus aimed at improving efficiency > print |
| 001 | 838910 | ||
| 005 | 20240712113249.0 | ||
| 024 | 7 | _ | |a 10.1016/j.ijhydene.2017.02.203 |2 doi |
| 024 | 7 | _ | |a 0360-3199 |2 ISSN |
| 024 | 7 | _ | |a 1879-3487 |2 ISSN |
| 024 | 7 | _ | |a WOS:000403381400089 |2 WOS |
| 037 | _ | _ | |a FZJ-2017-07416 |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Cheng, Siliang |0 0000-0001-8430-6346 |b 0 |
| 245 | _ | _ | |a Optimal warm-up control strategy of the PEMFC system on a city bus aimed at improving efficiency |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2017 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1582879109_13830 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Proton exchange membrane fuel cells (PEMFC) are considered an ideal solution for zero-emission vehicles. This study focuses on the warm-up strategy of the PEMFC system in an energy-type power train, which is widely used on city buses. Firstly, a system model was built and validated by experimental data. Based on the model, a dynamic programming (DP) algorithm was utilized to determine a warm-up method that optimizes global efficiency. Then, a rule-based analysis was carried out and a three-step strategy based on the DP algorithm was proposed in order to satisfy the demand of real-time control. Simulation results show that the efficiency optimization of the three-step strategy is very close to that of the dynamic programming algorithm. In addition, the effects of warm-up time and environment temperature on efficiency are discussed. Results show that a longer warm-up time and a higher environment temperature are helpful for improving efficiency. |
| 536 | _ | _ | |a 135 - Fuel Cells (POF3-135) |0 G:(DE-HGF)POF3-135 |c POF3-135 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Xu, Liangfei |0 P:(DE-Juel1)168338 |b 1 |
| 700 | 1 | _ | |a Wu, Kai |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Fang, Chuan |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Hu, Junming |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Li, Jianqiu |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
| 700 | 1 | _ | |a Ouyang, Minggao |0 P:(DE-HGF)0 |b 6 |
| 773 | _ | _ | |a 10.1016/j.ijhydene.2017.02.203 |g Vol. 42, no. 16, p. 11632 - 11643 |0 PERI:(DE-600)1484487-4 |n 16 |p 11632 - 11643 |t International journal of hydrogen energy |v 42 |y 2017 |x 0360-3199 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |p VDB |o oai:juser.fz-juelich.de:838910 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)168338 |
| 913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-135 |2 G:(DE-HGF)POF3-100 |v Fuel Cells |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2017 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J HYDROGEN ENERG : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-3-20101013 |k IEK-3 |l Technoökonomische Systemanalyse |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-14-20191129 |k IEK-14 |l Elektrochemische Verfahrenstechnik |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-3-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-14-20191129 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-2-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
| 981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|