001     838910
005     20240712113249.0
024 7 _ |a 10.1016/j.ijhydene.2017.02.203
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000403381400089
|2 WOS
037 _ _ |a FZJ-2017-07416
082 _ _ |a 660
100 1 _ |a Cheng, Siliang
|0 0000-0001-8430-6346
|b 0
245 _ _ |a Optimal warm-up control strategy of the PEMFC system on a city bus aimed at improving efficiency
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582879109_13830
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Proton exchange membrane fuel cells (PEMFC) are considered an ideal solution for zero-emission vehicles. This study focuses on the warm-up strategy of the PEMFC system in an energy-type power train, which is widely used on city buses. Firstly, a system model was built and validated by experimental data. Based on the model, a dynamic programming (DP) algorithm was utilized to determine a warm-up method that optimizes global efficiency. Then, a rule-based analysis was carried out and a three-step strategy based on the DP algorithm was proposed in order to satisfy the demand of real-time control. Simulation results show that the efficiency optimization of the three-step strategy is very close to that of the dynamic programming algorithm. In addition, the effects of warm-up time and environment temperature on efficiency are discussed. Results show that a longer warm-up time and a higher environment temperature are helpful for improving efficiency.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 1
700 1 _ |a Wu, Kai
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fang, Chuan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hu, Junming
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.ijhydene.2017.02.203
|g Vol. 42, no. 16, p. 11632 - 11643
|0 PERI:(DE-600)1484487-4
|n 16
|p 11632 - 11643
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838910/files/1-s2.0-S0360319917307863-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:838910
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168338
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21