000838926 001__ 838926
000838926 005__ 20210129231658.0
000838926 0247_ $$2doi$$a10.5194/hess-21-5375-2017
000838926 0247_ $$2ISSN$$a1027-5606
000838926 0247_ $$2ISSN$$a1607-7938
000838926 0247_ $$2Handle$$a2128/15834
000838926 0247_ $$2WOS$$aWOS:000413733500002
000838926 0247_ $$2altmetric$$aaltmetric:27945370
000838926 037__ $$aFZJ-2017-07429
000838926 082__ $$a550
000838926 1001_ $$0P:(DE-HGF)0$$aJadoon, Khan Zaib$$b0$$eCorresponding author
000838926 245__ $$aInferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo
000838926 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000838926 3367_ $$2DRIVER$$aarticle
000838926 3367_ $$2DataCite$$aOutput Types/Journal article
000838926 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510309183_27065
000838926 3367_ $$2BibTeX$$aARTICLE
000838926 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838926 3367_ $$00$$2EndNote$$aJournal Article
000838926 520__ $$aA substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.
000838926 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000838926 588__ $$aDataset connected to CrossRef
000838926 7001_ $$0P:(DE-HGF)0$$aAltaf, Muhammad Umer$$b1
000838926 7001_ $$00000-0002-1279-5272$$aMcCabe, Matthew Francis$$b2
000838926 7001_ $$0P:(DE-HGF)0$$aHoteit, Ibrahim$$b3
000838926 7001_ $$0P:(DE-HGF)0$$aMuhammad, Nisar$$b4
000838926 7001_ $$0P:(DE-HGF)0$$aMoghadas, Davood$$b5
000838926 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, Lutz$$b6
000838926 773__ $$0PERI:(DE-600)2100610-6$$a10.5194/hess-21-5375-2017$$gVol. 21, no. 10, p. 5375 - 5383$$n10$$p5375 - 5383$$tHydrology and earth system sciences$$v21$$x1027-5606$$y2017
000838926 8564_ $$uhttps://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.pdf$$yOpenAccess
000838926 8564_ $$uhttps://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.gif?subformat=icon$$xicon$$yOpenAccess
000838926 8564_ $$uhttps://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838926 8564_ $$uhttps://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838926 8564_ $$uhttps://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838926 8564_ $$uhttps://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838926 909CO $$ooai:juser.fz-juelich.de:838926$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000838926 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich$$b6$$kFZJ
000838926 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000838926 9141_ $$y2017
000838926 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000838926 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838926 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHYDROL EARTH SYST SC : 2015
000838926 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838926 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838926 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838926 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838926 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838926 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838926 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838926 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838926 920__ $$lyes
000838926 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000838926 980__ $$ajournal
000838926 980__ $$aVDB
000838926 980__ $$aUNRESTRICTED
000838926 980__ $$aI:(DE-Juel1)IBG-3-20101118
000838926 9801_ $$aFullTexts