| Home > Publications database > Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo > print |
| 001 | 838926 | ||
| 005 | 20210129231658.0 | ||
| 024 | 7 | _ | |a 10.5194/hess-21-5375-2017 |2 doi |
| 024 | 7 | _ | |a 1027-5606 |2 ISSN |
| 024 | 7 | _ | |a 1607-7938 |2 ISSN |
| 024 | 7 | _ | |a 2128/15834 |2 Handle |
| 024 | 7 | _ | |a WOS:000413733500002 |2 WOS |
| 024 | 7 | _ | |a altmetric:27945370 |2 altmetric |
| 037 | _ | _ | |a FZJ-2017-07429 |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Jadoon, Khan Zaib |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo |
| 260 | _ | _ | |a Katlenburg-Lindau |c 2017 |b EGU |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1510309183_27065 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs. |
| 536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Altaf, Muhammad Umer |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a McCabe, Matthew Francis |0 0000-0002-1279-5272 |b 2 |
| 700 | 1 | _ | |a Hoteit, Ibrahim |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Muhammad, Nisar |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Moghadas, Davood |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Weihermüller, Lutz |0 P:(DE-Juel1)129553 |b 6 |
| 773 | _ | _ | |a 10.5194/hess-21-5375-2017 |g Vol. 21, no. 10, p. 5375 - 5383 |0 PERI:(DE-600)2100610-6 |n 10 |p 5375 - 5383 |t Hydrology and earth system sciences |v 21 |y 2017 |x 1027-5606 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.jpg?subformat=icon-640 |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/838926/files/hess-21-5375-2017.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:838926 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129553 |
| 913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
| 914 | 1 | _ | |y 2017 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b HYDROL EARTH SYST SC : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|