000839885 001__ 839885
000839885 005__ 20210129231703.0
000839885 0247_ $$2doi$$a10.1016/j.geoderma.2017.10.047
000839885 0247_ $$2ISSN$$a0016-7061
000839885 0247_ $$2ISSN$$a1872-6259
000839885 0247_ $$2WOS$$aWOS:000424178400005
000839885 0247_ $$2Handle$$a2128/18681
000839885 037__ $$aFZJ-2017-07464
000839885 041__ $$aEnglish
000839885 082__ $$a550
000839885 1001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b0$$eCorresponding author$$ufzj
000839885 245__ $$aCorrespondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states
000839885 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000839885 3367_ $$2DRIVER$$aarticle
000839885 3367_ $$2DataCite$$aOutput Types/Journal article
000839885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527166260_22519
000839885 3367_ $$2BibTeX$$aARTICLE
000839885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000839885 3367_ $$00$$2EndNote$$aJournal Article
000839885 520__ $$aThe link between carbon turnover model pools and measurable carbon fractions is of key interest for initial parameterisation and subsequent validation of dynamic soil carbon models. In this study we performed the established particle-size fractionation of soils from 54 intensively monitored sites in Germany and from archived samples from 5 other long-term experiments in Germany and the United Kingdom. The Rothamsted carbon (RothC) model was then used to compare the measured soil C fractionation from the 54 intensively monitored sites against modelled pools using spin-up equilibrium runs whilst dynamic (non-equilibrium) model runs were performed when comparing data from the long-term experiments. We detected good agreement between measured soil C fractions and modelled pools, indicated by correlation coefficients of 0.73 and 0.81 for the resistant plant material pool (RPM) and 0.91 and 0.94 for the humus pool (HUM) for the intensively monitored and the long-term sites, respectively. Slightly larger errors were detected for the intensively monitored sites together with a bias in the relationship between the RPM pool and particulate organic matter fraction. This bias detected for the intensively monitored sites indicated that the equilibrium assumption for arable agricultural sites, even though under crop cover for at least 50 years, might not be entirely valid. From the relative mean absolute error of 11% for the HUM pool and 26% for the RPM pool of the combined data set we conform that the measured fractions can be used to estimate the RothC model pools in arable soils. Given the magnitude of these errors, however, we rather suggest to apply the fractionation approach instead of using an equilibrium assumption for the RothC initialisation of arable sites.
000839885 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000839885 588__ $$aDataset connected to CrossRef
000839885 7001_ $$0P:(DE-HGF)0$$aWelp, G.$$b1
000839885 7001_ $$0P:(DE-HGF)0$$aMacdonald, A.$$b2
000839885 7001_ $$0P:(DE-HGF)0$$aJate, M.$$b3
000839885 7001_ $$0P:(DE-HGF)0$$aHädicke, A.$$b4
000839885 7001_ $$0P:(DE-HGF)0$$aScherer, H.$$b5
000839885 7001_ $$0P:(DE-HGF)0$$aGaiser, T.$$b6
000839885 7001_ $$0P:(DE-Juel1)141774$$aHerrmann, F.$$b7$$ufzj
000839885 7001_ $$0P:(DE-Juel1)129427$$aAmelung, W.$$b8$$ufzj
000839885 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b9$$ufzj
000839885 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2017.10.047$$gVol. 314, p. 37 - 46$$p37 - 46$$tGeoderma$$v314$$x0016-7061$$y2018
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/1-s2.0-S0016706117314581-main.pdf$$yRestricted
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/1-s2.0-S0016706117314581-main.gif?subformat=icon$$xicon$$yRestricted
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/1-s2.0-S0016706117314581-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/1-s2.0-S0016706117314581-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/1-s2.0-S0016706117314581-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/1-s2.0-S0016706117314581-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/postprint_geoderma_2018_herbst.pdf$$yPublished on 2017-11-13. Available in OpenAccess from 2019-11-13.
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/postprint_geoderma_2018_herbst.gif?subformat=icon$$xicon$$yPublished on 2017-11-13. Available in OpenAccess from 2019-11-13.
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/postprint_geoderma_2018_herbst.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2017-11-13. Available in OpenAccess from 2019-11-13.
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/postprint_geoderma_2018_herbst.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-11-13. Available in OpenAccess from 2019-11-13.
000839885 8564_ $$uhttps://juser.fz-juelich.de/record/839885/files/postprint_geoderma_2018_herbst.jpg?subformat=icon-640$$xicon-640$$yPublished on 2017-11-13. Available in OpenAccess from 2019-11-13.
000839885 909CO $$ooai:juser.fz-juelich.de:839885$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000839885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b0$$kFZJ
000839885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141774$$aForschungszentrum Jülich$$b7$$kFZJ
000839885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b8$$kFZJ
000839885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b9$$kFZJ
000839885 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000839885 9141_ $$y2018
000839885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000839885 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000839885 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000839885 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000839885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000839885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000839885 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000839885 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000839885 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000839885 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000839885 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000839885 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000839885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000839885 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000839885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000839885 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000839885 980__ $$ajournal
000839885 980__ $$aVDB
000839885 980__ $$aUNRESTRICTED
000839885 980__ $$aI:(DE-Juel1)IBG-3-20101118
000839885 9801_ $$aFullTexts