000839892 001__ 839892
000839892 005__ 20220930130135.0
000839892 0247_ $$2doi$$a10.5194/acp-17-13439-2017
000839892 0247_ $$2ISSN$$a1680-7316
000839892 0247_ $$2ISSN$$a1680-7324
000839892 0247_ $$2Handle$$a2128/15895
000839892 0247_ $$2WOS$$aWOS:000415092300001
000839892 0247_ $$2altmetric$$aaltmetric:28836574
000839892 037__ $$aFZJ-2017-07470
000839892 041__ $$aEnglish
000839892 082__ $$a550
000839892 1001_ $$0P:(DE-Juel1)169305$$aWu, Xue$$b0$$eCorresponding author
000839892 245__ $$aEquatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009
000839892 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000839892 3367_ $$2DRIVER$$aarticle
000839892 3367_ $$2DataCite$$aOutput Types/Journal article
000839892 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515492014_19490
000839892 3367_ $$2BibTeX$$aARTICLE
000839892 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000839892 3367_ $$00$$2EndNote$$aJournal Article
000839892 520__ $$aTropical volcanic eruptions have been widely studied for their significant contribution to stratospheric aerosol loading and global climate impacts, but the impact of high-latitude volcanic eruptions on the stratospheric aerosol layer is not clear and the pathway of transporting aerosol from high latitudes to the tropical stratosphere is not well understood. In this work, we focus on the high-latitude volcano Sarychev (48.1° N, 153.2° E), which erupted in June 2009, and the influence of the Asian summer monsoon (ASM) on the equatorward dispersion of the volcanic plume. First, the sulfur dioxide (SO2) emission time series and plume height of the Sarychev eruption are estimated with SO2 observations of the Atmospheric Infrared Sounder (AIRS) and a backward trajectory approach using the Lagrangian particle dispersion model Massive–Parallel Trajectory Calculations (MPTRAC). Then, the transport and dispersion of the plume are simulated using the derived SO2 emission time series. The transport simulations are compared with SO2 observations from AIRS and validated with aerosol observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The MPTRAC simulations show that about 4 % of the sulfur emissions were transported to the tropical stratosphere within 50 days after the beginning of the eruption, and the plume dispersed towards the tropical tropopause layer (TTL) through isentropic transport above the subtropical jet. The MPTRAC simulations and MIPAS aerosol data both show that between the potential temperature levels of 360 and 400 K, the equatorward transport was primarily driven by anticyclonic Rossby wave breaking enhanced by the ASM in boreal summer. The volcanic plume was entrained along the anticyclone flows and reached the TTL as it was transported southwestwards into the deep tropics downstream of the anticyclone. Further, the ASM anticyclone influenced the pathway of aerosols by isolating an "aerosol hole" inside of the ASM, which was surrounded by aerosol-rich air outside. This transport barrier was best indicated using the potential vorticity gradient approach. Long-term MIPAS aerosol detections show that after entering the TTL, aerosol from the Sarychev eruption remained in the tropical stratosphere for about 10 months and ascended slowly. The ascent speed agreed well with the ascent speed of the water vapor tape recorder. Furthermore, a hypothetical MPTRAC simulation for a wintertime eruption was carried out. It is shown that under winter atmospheric circulations, the equatorward transport of the plume would be suppressed by the strong subtropical jet and weak wave breaking events. In this hypothetical scenario, a high-latitude volcanic eruption would not be able to contribute to the tropical stratospheric aerosol layer.
000839892 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000839892 588__ $$aDataset connected to CrossRef
000839892 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b1
000839892 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000839892 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-17-13439-2017$$gVol. 17, no. 21, p. 13439 - 13455$$n21$$p13439 - 13455$$tAtmospheric chemistry and physics$$v17$$x1680-7324$$y2017
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/invoice_Helmholtz-PUC-2018-6.pdf
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/acp-17-13439-2017.pdf$$yOpenAccess
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/acp-17-13439-2017.gif?subformat=icon$$xicon$$yOpenAccess
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/acp-17-13439-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/acp-17-13439-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/acp-17-13439-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/acp-17-13439-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/invoice_Helmholtz-PUC-2018-6.gif?subformat=icon$$xicon
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-1440$$xicon-1440
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-180$$xicon-180
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-640$$xicon-640
000839892 8564_ $$uhttps://juser.fz-juelich.de/record/839892/files/invoice_Helmholtz-PUC-2018-6.pdf?subformat=pdfa$$xpdfa
000839892 8767_ $$8Helmholtz-PUC-2018-6$$92018-01-03$$d2018-01-08$$eAPC$$jZahlung erfolgt$$pacp-2017-425
000839892 909CO $$ooai:juser.fz-juelich.de:839892$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000839892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169305$$aForschungszentrum Jülich$$b0$$kFZJ
000839892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b1$$kFZJ
000839892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000839892 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000839892 9141_ $$y2017
000839892 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000839892 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000839892 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000839892 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000839892 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000839892 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000839892 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000839892 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000839892 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000839892 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000839892 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000839892 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000839892 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000839892 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000839892 920__ $$lyes
000839892 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000839892 980__ $$ajournal
000839892 980__ $$aVDB
000839892 980__ $$aI:(DE-Juel1)JSC-20090406
000839892 980__ $$aAPC
000839892 980__ $$aUNRESTRICTED
000839892 9801_ $$aAPC
000839892 9801_ $$aFullTexts