001     839931
005     20210129231712.0
024 7 _ |a 10.1021/acs.biomac.6b01693
|2 doi
024 7 _ |a 1525-7797
|2 ISSN
024 7 _ |a 1526-4602
|2 ISSN
024 7 _ |a pmid:28068466
|2 pmid
024 7 _ |a WOS:000396379600017
|2 WOS
024 7 _ |a altmetric:17888960
|2 altmetric
037 _ _ |a FZJ-2017-07509
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gao, Jie
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology
260 _ _ |a Columbus, Ohio
|c 2017
|b American Chemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1513062549_1938
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Self-assembling peptide-based hydrogels have encountered increasing interest in the recent years as scaffolds for 3D cell culture or for controlled drug delivery. One of the main challenges is the fine control of the mechanical properties of these materials. The bulk properties of hydrogels not only depend on the intrinsic properties of the fibers but also on the network topology formed. In this work we show how fiber–fiber interactions can be manipulated by design to control the final hydrogel network topology and therefore control the final properties of the material. This was achieved by exploiting the design features of β-sheet forming peptides based on hydrophobic and hydrophilic residue alternation and exploiting the ability of the arginine’s guanidine side group to interact with itself and with other amino acid side groups. By designing octa-peptides based on phenylalanine, glutamic acid, lysine, and arginine, we have investigated how fiber association and bundling affect the dynamic shear modulus of hydrogels and how it can be controlled by design. This work opens the possibility to fine-tune by design the bulk properties of peptide hydrogels.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 0
700 1 _ |a Tang, Claire
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Elsawy, Mohamed A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Smith, Andrew M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Miller, Aline F.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Saiani, Alberto
|0 0000-0002-5504-8306
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.biomac.6b01693
|g Vol. 18, no. 3, p. 826 - 834
|0 PERI:(DE-600)2006291-6
|n 3
|p 826 - 834
|t Biomacromolecules
|v 18
|y 2017
|x 1526-4602
856 4 _ |u https://juser.fz-juelich.de/record/839931/files/acs.biomac.6b01693.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839931/files/acs.biomac.6b01693.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839931/files/acs.biomac.6b01693.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839931/files/acs.biomac.6b01693.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839931/files/acs.biomac.6b01693.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839931/files/acs.biomac.6b01693.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:839931
|p VDB:MLZ
|p VDB
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMACROMOLECULES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOMACROMOLECULES : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21