001     839966
005     20240711085656.0
024 7 _ |a 10.1016/j.jpowsour.2017.11.025
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000418391900009
|2 WOS
037 _ _ |a FZJ-2017-07540
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 0
|e Corresponding author
245 _ _ |a Post-test characterization of a solid oxide fuel cell stack operated for more than 30,000 hours: The cell
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1513683962_27845
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A four-layer solid oxide fuel cell stack with planar anode-supported cells was operated galvanostatically at 700 °C and 0.5Acm−2 for nearly 35,000 h. One of the four planes started to degrade more rapidly after ∼28,000 h and finally more progressively after ∼33,000 h. The stack was then shut down and a post-test analysis was carefully performed. The cell was characterized with respect to cathodic impurities and clarification of the reason(s) for failure. Wet chemical analysis revealed very low chromium incorporation into the cathode. However, SEM and TEM observations on polished and fractured surfaces showed catastrophic failure in the degraded layer. The cathode–barrier–electrolyte cell layer system delaminated from the entire cell over large areas. The source of delamination was the formation of a porous, sponge-like secondary phase consisting of zirconia, yttria and manganese (oxide). Large secondary phase islands grew from the electrolyte–anode interface towards the anode and cracked the bonding between both layers. The manganese originated from the contact or protection layers used on the air side. This stack result shows that volatile species – in this case manganese – should be avoided, especially when long-term applications are envisaged.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 1
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 2
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2017.11.025
|g Vol. 374, p. 69 - 76
|0 PERI:(DE-600)1491915-1
|p 69 - 76
|t Journal of power sources
|v 374
|y 2018
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/839966/files/1-s2.0-S0378775317314842-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839966/files/1-s2.0-S0378775317314842-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839966/files/1-s2.0-S0378775317314842-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839966/files/1-s2.0-S0378775317314842-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839966/files/1-s2.0-S0378775317314842-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839966/files/1-s2.0-S0378775317314842-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:839966
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21