000839984 001__ 839984
000839984 005__ 20240711113859.0
000839984 0247_ $$2doi$$a10.1088/1741-4326/aa8bf3
000839984 0247_ $$2ISSN$$a0029-5515
000839984 0247_ $$2ISSN$$a1741-4326
000839984 0247_ $$2WOS$$aWOS:000422828000002
000839984 0247_ $$2altmetric$$aaltmetric:27954197
000839984 037__ $$aFZJ-2017-07554
000839984 041__ $$aEnglish
000839984 082__ $$a530
000839984 1001_ $$0P:(DE-Juel1)145407$$aRack, M.$$b0$$eCorresponding author
000839984 245__ $$aEvidence and modeling of 3D divertor footprint induced by lower hybrid waves on EAST with tungsten divertor operations
000839984 260__ $$aVienna$$bIAEA$$c2017
000839984 3367_ $$2DRIVER$$aarticle
000839984 3367_ $$2DataCite$$aOutput Types/Journal article
000839984 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510825140_1449
000839984 3367_ $$2BibTeX$$aARTICLE
000839984 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000839984 3367_ $$00$$2EndNote$$aJournal Article
000839984 520__ $$aThree dimensional (3D) divertor particle flux footprints induced by the lower hybrid wave (LHW) have been systematically investigated in the EAST superconducting tokamak during the recent experimental campaign. We find that the striated particle flux (SPF) peaks away from the strike point (SP) closely fit the pitch of the edge magnetic field line for different safety factors q 95, as predicted by a field line tracing code taking into account the helical current filaments (HCFs) in the scrape-off-layer (SOL). As LHW power increases, it requires the fuelling to be increased e.g. by super molecular beam injection (SMBI), to maintain a similar plasma density, which may be attributed to the pump-out effect due to LHW, and may thus be beneficial for EAST steady state operations. The 3D SPF structure is observed with a LHW power threshold (P LHW ~ 0.9 MW). The ratio of the particle fluxes between SPF and outer strike point (OSP), i.e. ${{\Gamma }_{{\rm ion},{\rm SPF}}}/{{\Gamma }_{{\rm ion},{\rm OSP}}}$ , increases with the LHW power. Upon transition to divertor detachment, the particle flux at the main OSP decreases, as expected, however, the particle flux at SPF continues increasing, in contrast to the RMP-induced striations that vanish with increasing divertor density. In addition, we also find that the in–out asymmetry of the 3D particle flux footprint pattern exhibits a clear dependence on the toroidal field direction (B × ∇ B ↓ and B × ∇ B↑). Experiments using neon impurity seeding show a promising capability in 3D particle and heat flux control on EAST. LHW-induced particle and heat flux striations are also present in the H-mode plasmas, reducing the peak heat flux and erosion at the main strike point, thus facilitating long-pulse operation with a new steady-state H-mode over 60 s being recently achieved in EAST.
000839984 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000839984 588__ $$aDataset connected to CrossRef
000839984 7001_ $$0P:(DE-HGF)0$$aGuo, H. Y.$$b1
000839984 7001_ $$0P:(DE-HGF)0$$aXu, G. S.$$b2
000839984 7001_ $$0P:(DE-HGF)0$$aXu, J. C.$$b3
000839984 7001_ $$0P:(DE-HGF)0$$aLiu, J. B.$$b4
000839984 7001_ $$00000-0002-9934-1328$$aSun, Y. W.$$b5
000839984 7001_ $$00000-0002-1672-9782$$aJia, M. N.$$b6
000839984 7001_ $$0P:(DE-HGF)0$$aYang, Q. Q.$$b7
000839984 7001_ $$0P:(DE-HGF)0$$aZou, X. L.$$b8
000839984 7001_ $$0P:(DE-HGF)0$$aLiu, H.$$b9
000839984 7001_ $$0P:(DE-HGF)0$$aDing, F.$$b10
000839984 7001_ $$0P:(DE-HGF)0$$aChen, J. B.$$b11
000839984 7001_ $$0P:(DE-HGF)0$$aDuan, Y. M.$$b12
000839984 7001_ $$0P:(DE-HGF)0$$aZheng, X. W.$$b13
000839984 7001_ $$0P:(DE-HGF)0$$aDai, S. Y.$$b14
000839984 7001_ $$0P:(DE-HGF)0$$aDeng, G. Z.$$b15
000839984 7001_ $$0P:(DE-HGF)0$$aChen, R.$$b16
000839984 7001_ $$0P:(DE-HGF)0$$aHu, G. H.$$b17
000839984 7001_ $$0P:(DE-HGF)0$$aYan, N.$$b18
000839984 7001_ $$0P:(DE-HGF)0$$aLiu, S. C.$$b19
000839984 7001_ $$0P:(DE-HGF)0$$aLi, M. H.$$b20
000839984 7001_ $$0P:(DE-HGF)0$$aDing, B. J.$$b21
000839984 7001_ $$0P:(DE-HGF)0$$aWingen, A.$$b22
000839984 7001_ $$0P:(DE-HGF)0$$aHuang, J.$$b23
000839984 7001_ $$0P:(DE-HGF)0$$aLuo, G. N.$$b24
000839984 7001_ $$0P:(DE-HGF)0$$aGong, X. Z.$$b25
000839984 7001_ $$0P:(DE-HGF)0$$aGarofalo, A. M.$$b26
000839984 7001_ $$0P:(DE-HGF)0$$aWan, B. N.$$b27
000839984 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b28
000839984 7001_ $$0P:(DE-HGF)0$$aFeng, W.$$b29
000839984 7001_ $$0P:(DE-HGF)0$$aWang, L.$$b30$$eCorresponding author
000839984 7001_ $$0P:(DE-HGF)0$$aLi, J.$$b31
000839984 7001_ $$0P:(DE-HGF)0$$aGao, X.$$b32
000839984 7001_ $$0P:(DE-HGF)0$$aWang, M.$$b33
000839984 7001_ $$0P:(DE-HGF)0$$aXu, S.$$b34
000839984 7001_ $$0P:(DE-HGF)0$$aSi, H.$$b35
000839984 7001_ $$0P:(DE-HGF)0$$aZhang, T.$$b36
000839984 7001_ $$0P:(DE-HGF)0$$aZhang, B.$$b37
000839984 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa8bf3$$gVol. 57, no. 12, p. 126054 -$$n12$$p126054 -$$tNuclear fusion$$v57$$x1741-4326$$y2017
000839984 8564_ $$uhttps://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.pdf$$yRestricted
000839984 8564_ $$uhttps://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.gif?subformat=icon$$xicon$$yRestricted
000839984 8564_ $$uhttps://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000839984 8564_ $$uhttps://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.jpg?subformat=icon-180$$xicon-180$$yRestricted
000839984 8564_ $$uhttps://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.jpg?subformat=icon-640$$xicon-640$$yRestricted
000839984 8564_ $$uhttps://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.pdf?subformat=pdfa$$xpdfa$$yRestricted
000839984 909CO $$ooai:juser.fz-juelich.de:839984$$pVDB
000839984 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000839984 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000839984 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000839984 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000839984 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000839984 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000839984 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000839984 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000839984 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000839984 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000839984 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000839984 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000839984 9141_ $$y2017
000839984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145407$$aForschungszentrum Jülich$$b0$$kFZJ
000839984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b28$$kFZJ
000839984 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000839984 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000839984 980__ $$ajournal
000839984 980__ $$aVDB
000839984 980__ $$aI:(DE-Juel1)IEK-4-20101013
000839984 980__ $$aUNRESTRICTED
000839984 981__ $$aI:(DE-Juel1)IFN-1-20101013