001     839984
005     20240711113859.0
024 7 _ |2 doi
|a 10.1088/1741-4326/aa8bf3
024 7 _ |2 ISSN
|a 0029-5515
024 7 _ |2 ISSN
|a 1741-4326
024 7 _ |a WOS:000422828000002
|2 WOS
024 7 _ |a altmetric:27954197
|2 altmetric
037 _ _ |a FZJ-2017-07554
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)145407
|a Rack, M.
|b 0
|e Corresponding author
245 _ _ |a Evidence and modeling of 3D divertor footprint induced by lower hybrid waves on EAST with tungsten divertor operations
260 _ _ |a Vienna
|b IAEA
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1510825140_1449
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Three dimensional (3D) divertor particle flux footprints induced by the lower hybrid wave (LHW) have been systematically investigated in the EAST superconducting tokamak during the recent experimental campaign. We find that the striated particle flux (SPF) peaks away from the strike point (SP) closely fit the pitch of the edge magnetic field line for different safety factors q 95, as predicted by a field line tracing code taking into account the helical current filaments (HCFs) in the scrape-off-layer (SOL). As LHW power increases, it requires the fuelling to be increased e.g. by super molecular beam injection (SMBI), to maintain a similar plasma density, which may be attributed to the pump-out effect due to LHW, and may thus be beneficial for EAST steady state operations. The 3D SPF structure is observed with a LHW power threshold (P LHW ~ 0.9 MW). The ratio of the particle fluxes between SPF and outer strike point (OSP), i.e. ${{\Gamma }_{{\rm ion},{\rm SPF}}}/{{\Gamma }_{{\rm ion},{\rm OSP}}}$ , increases with the LHW power. Upon transition to divertor detachment, the particle flux at the main OSP decreases, as expected, however, the particle flux at SPF continues increasing, in contrast to the RMP-induced striations that vanish with increasing divertor density. In addition, we also find that the in–out asymmetry of the 3D particle flux footprint pattern exhibits a clear dependence on the toroidal field direction (B  ×    ∇   B  ↓  and B  ×    ∇   B↑). Experiments using neon impurity seeding show a promising capability in 3D particle and heat flux control on EAST. LHW-induced particle and heat flux striations are also present in the H-mode plasmas, reducing the peak heat flux and erosion at the main strike point, thus facilitating long-pulse operation with a new steady-state H-mode over 60 s being recently achieved in EAST.
536 _ _ |0 G:(DE-HGF)POF3-174
|a 174 - Plasma-Wall-Interaction (POF3-174)
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Guo, H. Y.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Xu, G. S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Xu, J. C.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Liu, J. B.
|b 4
700 1 _ |0 0000-0002-9934-1328
|a Sun, Y. W.
|b 5
700 1 _ |0 0000-0002-1672-9782
|a Jia, M. N.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Yang, Q. Q.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Zou, X. L.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Liu, H.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Ding, F.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Chen, J. B.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Duan, Y. M.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Zheng, X. W.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Dai, S. Y.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Deng, G. Z.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Chen, R.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Hu, G. H.
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Yan, N.
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Liu, S. C.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Li, M. H.
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Ding, B. J.
|b 21
700 1 _ |0 P:(DE-HGF)0
|a Wingen, A.
|b 22
700 1 _ |0 P:(DE-HGF)0
|a Huang, J.
|b 23
700 1 _ |0 P:(DE-HGF)0
|a Luo, G. N.
|b 24
700 1 _ |0 P:(DE-HGF)0
|a Gong, X. Z.
|b 25
700 1 _ |0 P:(DE-HGF)0
|a Garofalo, A. M.
|b 26
700 1 _ |0 P:(DE-HGF)0
|a Wan, B. N.
|b 27
700 1 _ |0 P:(DE-Juel1)130088
|a Liang, Yunfeng
|b 28
700 1 _ |0 P:(DE-HGF)0
|a Feng, W.
|b 29
700 1 _ |0 P:(DE-HGF)0
|a Wang, L.
|b 30
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Li, J.
|b 31
700 1 _ |0 P:(DE-HGF)0
|a Gao, X.
|b 32
700 1 _ |0 P:(DE-HGF)0
|a Wang, M.
|b 33
700 1 _ |0 P:(DE-HGF)0
|a Xu, S.
|b 34
700 1 _ |0 P:(DE-HGF)0
|a Si, H.
|b 35
700 1 _ |0 P:(DE-HGF)0
|a Zhang, T.
|b 36
700 1 _ |0 P:(DE-HGF)0
|a Zhang, B.
|b 37
773 _ _ |0 PERI:(DE-600)2037980-8
|a 10.1088/1741-4326/aa8bf3
|g Vol. 57, no. 12, p. 126054 -
|n 12
|p 126054 -
|t Nuclear fusion
|v 57
|x 1741-4326
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/839984/files/Feng_2017_Nucl._Fusion_57_126054.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:839984
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145407
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130088
|a Forschungszentrum Jülich
|b 28
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-174
|1 G:(DE-HGF)POF3-170
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Kernfusion
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NUCL FUSION : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21